[1] CHENG, R. L., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124(6), 064506(2018) [2] CHENG, R. L., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Temperature effects on mobile charges in extension of composite fibers of piezoelectric dielectrics and non-piezoelectric semiconductors. International Journal of Applied Mechanics, 11(09), 1950088(2019) [3] CHENG, R. L., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Electrical behaviors of a piezoelectric semiconductor fiber under a local temperature change. Nano Energy, 66, 104081(2019) [4] ZHANG, C. L., WANG, X. Y., CHEN, W. Q., and YANG, J. S. An analysis of the extension of a ZnO piezoelectric semiconductor nano fiber under an axial force. Smart Materials and Structures, 26, 025030(2017) [5] DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43, 22-28(2018) [6] LIANG, Y., YANG, W., and YANG, J. Transient bending vibration of a piezoelectric semiconductor nanofiber under a suddenly applied shear force. Acta Mechanica Solida Sinica, 32, 688-697(2019) [7] YANG, W., HU, Y., and YANG, J. Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Material Research Express, 6, 025902(2019) [8] ZHAO, M. H., NIU, J. A., LU, C. S., WANG, B. B., and FAN, C. Y. Effects of flexoelectricity and strain gradient on bending vibration characteristics of piezoelectric semiconductor nanowires. Journal of Applied Physics, 129, 164301(2021) [9] FANG, X. Q., MA, H. W., and ZHU, C. S. Non-local multi-fields coupling response of a piezoelectric semiconductor nanofiber under shear force. Mechanics of Advanced Materials and Structures (2023) https://doi.org/10.1080/15376494.2022.2158503 [10] YANG, J. S. and ZHOU, H. G. Amplification of acoustic waves in piezoelectric semiconductor plates. International Journal of Solids and Structures, 42, 3171-3183(2005) [11] OTHMANI, C., TAKALI, F., and NJEH, A. Theoretical study on the dispersion curves of Lamb waves in piezoelectric-semiconductor sandwich plates GaAs-FGPMAlAs:Legendre polynomial series expansion. Superlattices and Microstructures, 106, 86-101(2017) [12] CAO, X., HU, S., LIU, J., and SHI, J. Generalized Rayleigh surface waves in a piezoelectric semiconductor half space. Meccanica, 54, 271-281(2019) [13] LI, M. G., ZHANG, Q. Y., WANG, B. B., and ZHAO, M. H. Analysis of flexural vibrations of a piezoelectric semiconductor nanoplate driven by a time-harmonic force. Materials, 14, 3926(2021) [14] SALAHA, I. B., TAKALIA, F., OTHMANIC, C., and NJEH, A. SH waves in a stressed piezoelectric semiconductor plates:electron and hole drift phenomenon. International Journal of Mechanical Science, 223, 107281(2022) [15] GUO, J. Y., NIE, G. Q., LIU, J. X., and ZHANG, L. L. Free vibration of a piezoelectric semiconductor plate. European Journal of Mechanics A-Solids, 95, 104647(2022) [16] ZHANG, Y. F., ZHANG, W., and YAO, Z. G. Analysis on nonlinear vibrations near internal resonances of a composite laminated piezoelectric rectangular plate. Engineering Structures, 173, 89-106(2018) [17] JIAO, F., WEI, P., ZHOU, Y., and ZHOU, X. Wave propagation through a piezoelectric semiconductor slab sandwiched by two piezoelectric half-spaces. European Journal of Mechanics/A Solids, 75, 70-81(2019) [18] SLADEK, J., SLADEK, V., and BISHAY, P. L. Influence of electric conductivity on intensity factors for cracks in functionally graded piezoelectric semiconductors. International Journal of Solids and Structures, 59, 79-89(2015) [19] HUANG, X. L. and SHEN, H. S. Vibration and dynamic response of functionally graded plates with piezoelectric actuators in thermal environments. Journal of Sound and Vibration, 289, 25-53(2006) |