[1] GUNZBURGER, M. D., MEIR, A. J., and Peterson, J. S. On the existence, uniqueness, and finite element approximation of solutions of the equations of stationary, incompressible magnetohydrodynamics. Mathematics of Computation, 56(194), 523-563(1991) [2] SCHÖTZAU, D. Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numerische Mathematik, 96(4), 771-800(2004) [3] BADIA, S., CODINA, R., and PLANAS, R. Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics. Archives of Computational Methods in Engineering, 22(4), 621-636(2015) [4] HE, Y. N. Unconditional convergence of the Euler semi-implicit scheme for the 3D incompressible MHD equations. IMA Journal of Numerical Analysis, 35(8), 767-801(2015) [5] PROHL, A. Convergent finite element discretizations of the nonstationary incompressible magnetohydrodynamics system. ESAIM Mathematical Modelling and Numerical Analysis, 42(6), 1065- 1087(2008) [6] DONG, X. J., HE, Y. N., and ZHANG, Y. Convergence analysis of three finite element iterative methods for the 2D/3D stationary incompressible magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 276, 287-311(2014) [7] LAYTON, W. J., MEIR, A. J., and SCHMIDT, P. G. A two-level discretization method for the stationary MHD equations. Electronic Transactions on Numerical Analysis, 6, 198-210(1997) [8] DONG, X. J. and HE, Y. N. Convergence of some finite element iterative methods related to different Reynolds numbers for the 2D/3D stationary incompressible magnetohydrodynamics. Science China Mathematics, 59(3), 589-608(2016) [9] XU, J. C. and ZHOU, A. H. Local and parallel finite element algorithms based on two-grid discretizations. Mathematics of Computation, 69(231), 881-909(2000) [10] XU, J. C. and ZHOU, A. H. Local and parallel finite element algorithms based on two-grid discretizations for nonlinear problems. Advances in Computational Mathematics, 14(4), 293-327(2001) [11] YU, J. P., SHI, F., and ZHENG, H. B. Local and parallel finite element algorithms based on the partition of unity for the Stokes problem. SIAM Journal on Scientific Computing, 36(5), 547-567(2014) [12] SHANG, Y. Q. and LUO, Z. D. A parallel two-level finite element method for the NavierStokes equations. Applied Mathematics and Mechanics (English Edition), 31(11), 1429-1438(2010) https://doi.org/10.1007/s10483-010-1373-7 [13] HE, Y. N., XU, J. C., and ZHOU, A. H. Local and parallel finite element algorithms for the Navier-Stokes problem. Journal of Computational Mathematics, 24(3), 227-238(2006) [14] TANG, Q. L. and HUANG, Y. Q. Local and parallel finite element algorithm based on Oseentype iteration for the stationary incompressible MHD flow. Journal of Scientific Computing, 70(1), 149-174(2017) [15] DONG, X. J., HE, Y. N., WEI, H. B., and ZHANG, Y. H. Local and parallel finite element algorithm based on the partition of unity method for the incompressible MHD flow. Advances in Computational Mathematics, 44(4), 1295-1319(2018) [16] SHANG, Y. Q., HE, Y. N., KIM, D. W., and ZHOU, X. J. A new parallel finite element algorithm for the stationary Navier-Stokes equations. Finite Elements in Analysis and Design, 47(11), 1262- 1279(2011) [17] SERMANE, M. and TEMAM, R. Some mathematics questions related to the MHD equations. Computer Compacts, 1(4), 212-212(1983) [18] ARNOLD, D. N., BREZZI, F., and FORTIN, M. A stable finite element for the Stokes equations. Calcolo, 21(4), 337-344(1984) [19] HEYWOOD, J. and RANNACHER, R. Finite element approximation of the nonstationary NavierStokes problem I:regularity of solutions and second-order error estimates for spatial discretization. SIAM Journal on Numerical Analysis, 19(2), 275-311(1982) [20] HE, Y. N., MEI, L. Q., SHANG, Y. Q., and CUI, J. Newton iterative parallel finite element algorithm for the steady Navier-Stokes equations. Journal of Scientific Computing, 44(1), 92-106(2010) [21] GREIF, C., LI, D., SCHÖTZAU, D., and WEI. X. X. A mixed finite element method with exactly divergence-free velocities for incompressible magnetohydrodynamics. Computer Methods in Applied Mechanics and Engineering, 199(45-48), 2840-2855(2010) |