[1] WANG, W. J., LI, P., JIN, F., and WANG, J. Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Composite Structures, 140, 758–775(2016) [2] YANG, J. S. and ZHOU, H. G. Acoustoelectric amplification of piezoelectric surface waves. Acta Mechanica, 172, 113–122(2004) [3] BÜYÜKKÖSE, S., HERNANDEZ-MINGUEZ, A., VRATZOV, B., SOMASCHINI, C., GEELHAAR, L., RIECHERT, H., VAN DER WIEL, W. G., and SANTOS, P. V. High-frequency acoustic charge transport in GaAs nanowires. Nanotechnology, 25(13), 135204(2014) [4] WANG, Z. L. and SONG, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science, 312, 242–246(2006) [5] WANG, Z. L. Nanopiezotronics. Advanced Materials, 19(6), 889–892(2007) [6] HAN, W., ZHOU, Y., ZHANG, Y., CHEN, C. Y., and WANG, Z. L. Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. ACS Nano, 6(5), 3760–3766(2012) [7] WANG, X. D., ZHOU, J., SONG, J. H., LIU, J., XU, N. S., and WANG, Z. L. Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. Nano Letter, 6(12), 2768–2772(2006) [8] YU, R., WU, W., DING, Y., and WANG, Z. L. GaN nanobelt-based strain-gated piezotronic logic devices and computation. ACS Nano, 7(7), 6403–6409(2013) [9] WU, W., WEI, Y., and WANG, Z. L. Strain-gated piezotronic logic nanodevices. Advanced Materials, 22(42), 4711–4715(2010) [10] ZHANG, C., WANG, X., CHEN, W., and YANG, J. An analysis of the extension of a ZnO piezoelectric semiconductor nanofiber under an axial force. Smart Materials and Structures, 26(2), 025030(2017) [11] ZHANG, C. L., LUO, Y. X., CHENG, R. R., and WANG, X. Y. Electromechanical fields in piezoelectric semiconductor nanofibers under an axial force. MRS Advances, 2(56), 3421–3426(2017) [12] ZHANG, C., WANG, X., CHEN, W., and YANG, J. Bending of a cantilever piezoelectric semiconductor fiber under an end force. Generalized Models and Non-classical Approaches in Complex Materials, Vol. 2, Springer, Cham, 261–278(2018) [13] FAN, S., HU, Y., and YANG, J. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition), 40(5), 591–600(2019) https://doi.org/10.1007/s10483-019-2481-6 [14] REN, C., WANG, K. F., and WANG, B. L. Adjusting the electromechanical coupling behaviors of piezoelectric semiconductor nanowires via strain gradient and flexoelectric effects. Journal of Applied Physics, 128, 215701(2020) [15] FANG, K., LI, P., LI, N., LIU, D. Z., QIAN, Z. H., KOLESOV, V., and KUZNETSOVA, I. Model and performance analysis of non-uniform piezoelectric semiconductor nanofibers. Applied Mathematical Modelling, 104, 628–643(2021) [16] FANG, K., LI, P., LI, N., LIU, D. Z., QIAN, Z. H., KOLESOV, V., and KUZNETSOVA, I. Impact of PN junction inhomogeneity on the piezoelectric fields of acoustic waves in piezo-semiconductive fibers. Ultrasonics, 120, 106660(2022) [17] XU, Z. L., FANG, K., YU, M. R., WANG, T. Q., LI, P., QIAN, Z. H., and LIU, D. Z. Analysis of the laterally bent piezoelectric semiconductor fibers with variable cross sections. Journal of Applied Physics, 133(19), 195702(2023) [18] LUO, Y. X., CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Electromechanical fields near a circular PN junction between two piezoelectric semiconductors. Acta Mechanica Solida Sinica, 31, 127–140(2018) [19] GUO, M. K., LI, Y., QIN, G. S., and ZHAO, M. H. Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mechanica, 230, 1825–1841(2019) [20] YANG, W., HU, Y., and PAN, E. Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Applied Mathematics and Mechanics (English Edition), 41(6), 833–844(2020) https://doi.org/10.1007/s10483-020-2619-7 [21] FAN, S. and CHEN, Z. Electric potential and energy band in ZnO nanofiber tuned by local mechanical loading. Applied Mathematics and Mechanics (English Edition), 42(6), 787–804(2021) https://doi.org/10.1007/s10483-021-2736-5 [22] YANG, J. S., YANG, X. M., and TURNER, J. A. Amplification of acoustic waves in laminated piezoelectric semiconductor plates. Archive of Applied Mechanics, 74(3), 288–298(2004) [23] CHENG, R. R., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Piezotronic effects in the extension of a composite fiber of piezoelectric dielectrics and nonpiezoelectric semiconductors. Journal of Applied Physics, 124(6), 064506(2018) [24] LUO, Y. X., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Piezopotential in a bended composite fiber made of a semiconductive core and of two piezoelectric layers with opposite polarities. Nano Energy, 54, 341–348(2018) [25] FANG, K., QIAN, Z. H., and YANG, J. S. Piezopotential in a composite cantilever of piezoelectric dielectrics and nonpiezoelectric semiconductors produced by shear force through e15. Materials Research Express, 6(11), 115917(2019) [26] JU, S., ZHANG, H. F., and YANG, J. S. Stress induced potential barriers in composite piezoelectric semiconductor fibers in extension. Ferroelectrics Letters Section, 48(4-6), 72–82(2021) [27] GUO, Y. T., ZHANG, C. L., CHEN, W. Q., and YANG, J. S. Interaction between torsional deformation and mobile charges in a composite rod of piezoelectric dielectrics and nonpiezoelectric semiconductors. Mechanics of Advanced Materials and Structures, 29(10), 1449–1455(2020) [28] YANG, G. Y., DU, J. K., WANG, J., and YANG, J. S. Extension of a piezoelectric semiconductor fiber with consideration of electrical nonlinearity. Acta Mechanica, 229(11), 4663–4676(2018) [29] GUO, M. K., LI, Y., QIN, G. S., and ZHAO, M. H. Nonlinear solutions of PN junctions of piezoelectric semiconductors. Acta Mechanica, 230(5), 1825–1841(2019) [30] ZHAO, M. H., MA, Z. L., LU, C. S., and ZHANG, Q. Y. Application of the homopoty analysis method to nonlinear characteristics of a piezoelectric semiconductor fiber. Applied Mathematics and Mechanics (English Edition), 42(5), 665–676(2021) https://doi.org/10.1007/s10483-021-2726-5 [31] SUN, L., ZHANG, Z. C., GAO, C. F., and ZHANG, C. L. Effect of flexoelectricity on piezotronic responses of a piezoelectric semiconductor bilayer. Journal of Applied Physics, 129(24), 244102(2021) [32] YANG, L., DU, J. K., WANG, J., and YANG, J. S. An analysis of piezomagnetic-piezoelectric semiconductor unimorphs in coupled bending and extension under a transverse magnetic field. Acta Mechanica Solida Sinica, 34, 743–753(2021) [33] DAI, X. Y., ZHU, F., QIAN, Z. H., and YANG, J. S. Electric potential and carrier distribution in a piezoelectric semiconductor nanowire in time-harmonic bending vibration. Nano Energy, 43, 22–28(2018) [34] ZHAO, M. H., LI, X. F., LU, C. S., and ZHANG, Q. Y. Nonlinear analysis of a crack in 2D piezoelectric semiconductors with exact electric boundary conditions. Journal of Intelligent Material Systems and Structures, 32(6), 632–639(2021) [35] ZHANG, Q. Y., FAN, C. Y., XU, G. T., and ZHAO, M. H. Iterative boundary element method for crack analysis of two-dimensional piezoelectric semiconductor. Engineering Analysis with Boundary Elements, 83, 87–95(2017) [36] BERT, C. W. and MALIK, M. Differential quadrature method in computational mechanics: a review. Applied Mechanics Reviews, 49(1), 1–28(1996) [37] SHU, C. Differential Quadrature and Its Application in Engineering, Springer Science & Business Media, New York (2012) [38] ZHAO, L. and JIN, F. The adjustment of electro-elastic properties in non-uniform flexoelectric semiconductor nanofibers. Acta Mechanica, 234(3), 975–990(2023) [39] AULD, B. A. Acoustic Fields and Waves in Solids, Vol. I, Wiley, New York (1973) [40] BAO, G. F., LI, D. Z., KONG, D. J., ZHANG, Z. C., and ZHANG, C. L. Analysis of axially loaded piezoelectric semiconductor rods with geometric nonlinearity. International Journal of Applied Mechanics, 14(10), 2250104(2022) |