[1] Ma, F. Y., Ma, Y. C., and Wo, W. F. Local and parallel finite element algorithms based on two-grid discretization for steady Navier-Stokes equations. Appl. Math. Mech. -Engl. Ed., 28(1), 27-35 (2007) DOI 10.1007/s10483-007-0104-x
[2] Shang, Y. Q. and Luo, Z. D. A parallel two-level finite element method for the Navier-Stokes equations. Appl. Math. Mech. -Engl. Ed., 31(11), 1429-1438 (2010) DOI 10.1007/s10483-010- 1373-7
[3] Huang, P. Z., He, Y. N., and Feng, X. L. Two-level stabilized finite element method for Stokes eigenvalue problem. Appl. Math. Mech. -Engl. Ed., 33(5), 621-630 (2012) DOI 10.1007/s10483- 012-1575-7
[4] Chen, G., Feng, M. F., and He, Y. N. Unified analysis for stabilized methods of low-order mixed finite elements for stationary Navier-Stokes equations. Appl. Math. Mech. -Engl. Ed., 34(8), 953- 970 (2013) DOI 10.1007/s10483-013-1720-9
[5] Girault, V. and Lions, J. L. Two-grid finite element scheme for the steady Navier-Stokes equations in polyhedra. Portugal. Math., 58(1), 25-57 (2001)
[6] Girault, V. and Raviart, P. A. Finite Element Methods for the Navier-Stokes Equations, Spinger- Verlag, Berlin, 278-288 (1986)
[7] He, Y. N. Euler implicit/explicit iterative scheme for the stationary Navier-Stokes equations. Numer. Math., 123(1), 67-96 (2013)
[8] He, Y. N. and Li, K. T. Two-level stabilized finite element methods for the steady Navier-Stokes equations. Computing, 74(4), 337-351 (2005)
[9] He, Y. N. and Li, J. Convergence of three iterative methods based on the finite element discretization for the stationary Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 198(15), 1351-1359 (2009)
[10] He, Y. N. and Li, J. Numerical comparisons of time-space iterative method and spatial iterative methods for the stationary Navier-Stokes equations. J. Comput. Phys., 231(20), 6790-6800 (2012)
[11] He, Y. N., Wang, A. W., Chen, Z. X., and Li, K. T. An optimal nonlinear Galerkin method with mixed finite elements for the steady Navier-Stokes equations. Numer. Methods PDEs, 19(6), 762-775 (2003)
[12] Layton, W. J. A two-level discretization method for the Navier-Stokes equations. Comput. Math. Appl., 26(2), 33-38 (1993)
[13] Layton, W. J., Lee, H. K., and Peterson, J. Numerical solution of the stationary Navier-Stokes equations using a multilevel finite element method. SIAM J. Sci. Comput., 20(1), 1-12 (1998)
[14] Temam, R. Navier-Stokes Equations, North-Holland, Amsterdam, 158-168 (1984)
[15] Xu, H. and He, Y. N. Some iterative finite element methods for steady Navier-Stokes equations with different viscosities. J. Comput. Phys., 232(1), 136-152 (2013)
[16] Girault, V. and Lions, J. L. Two-grid finite element scheme for the transient Navier-Stokes problem. Math. Model. Numer. Anal., 35(5), 945-980 (2001)
[17] He, Y. N. Two-level method based on finite element and Crank-Nicolson extrapolation for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 41(4), 1263-1285 (2004)
[18] He, Y. N. and Li, K. T. Asymptotic behavior and time discretization analysis for the nonstationary Navier-Stokes problem. Numer. Math., 98(4), 647-673 (2004)
[19] He, Y. N. and Sun, W. W. Stability and convergence of the Crank-Nicolson/ Adams-Bashforth scheme for the time-dependent Navier-Stokes equations. SIAM J. Numer. Anal., 45(2), 837-869 (2007)
[20] Heywood, J. G. and Rannacher, R. Finite element approximation of the nonstationary Navier- Stokes problem, I: regularity of solutions and second-order error estimates for spatial discretization. SIAM J. Numer. Anal., 19(2), 275-311 (1982)
[21] Heywood, J. G. and Rannacher, R. Finite element approximations of the nonstationary Navier- Stokes problem, II: stability of the solution and error estimates uniform in time. SIAM J. Numer. Anal., 23(4), 750-777 (1986)
[22] Heywood, J. G. and Rannacher, R. Finite element approximations of the nonstationary Navier- Stokes problem, III: smoothing property and higher order error estimates for spatial discretization. SIAM J. Numer. Anal., 25(3), 489-512 (1988)
[23] Hill, A. T. and Süli, E. Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal., 20(4), 633-667 (2000)
[24] Labovsky, A., Layton, W. J., Manica, C. C., Neda, M., and Rebholz, L. G. The stabilized extrapolated trapezoidal finite element method for the Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg., 198(9), 958-974 (2009)
[25] Li, K. T., Huang, A. X., and Huang, Q. H. Finite Element Methods and Their Applications (in Chinese), Academic Press, Beijing, 344-347 (2006) |