Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (1): 69-84.doi: https://doi.org/10.1007/s10483-024-3067-8
• Articles • Previous Articles Next Articles
Chen ZHAO, Zhenli CHEN*(), C. T. MUTASA, Dong LI
Received:
2023-05-31
Online:
2024-01-01
Published:
2023-12-26
Contact:
Zhenli CHEN
E-mail:zhenlichen@nwpu.edu.cn
Supported by:
2010 MSC Number:
Chen ZHAO, Zhenli CHEN, C. T. MUTASA, Dong LI. Effects of layer interactions on instantaneous stability of finite Stokes flows. Applied Mathematics and Mechanics (English Edition), 2024, 45(1): 69-84.
1 | HACK, M. J., and ZAKI, T. A. The influence of harmonic wall motion on transitional boundary layers. Journal of Fluid Mechanics, 760, 63- 94 (2014) |
2 | HACK, M. J., and ZAKI, T. A. Modal and non-modal stability of boundary layers forced by spanwise wall oscillations. Journal of Fluid Mechanics, 778, 389- 427 (2015) |
3 | DAVIS, S. H. The stability of time-periodic flows. Annual Review of Fluid Mechanics, 8, 57- 74 (1976) |
4 | SCHMID, P. J., and HENNINGSON, D. S. Stability and Transition in Shear Flows, Springer-Verlag, New York 56- 60 (2001) |
5 | LUO, J. S., and WU, X. S. On the linear instability of a finite Stokes layer: instantaneous versus Floquet modes. Physics of Fluids, 22 (5), 054106 (2010) |
6 | KERCZEK, C. V., and DAVIS, S. H. Linear stability theory of oscillatory Stokes layers. Journal of Fluid Mechanics, 62 (4), 753- 773 (2006) |
7 | HALL, P. The linear stability of flat Stokes layers. Proceedings of the Royal Society A, 359 (1697), 151- 166 (1978) |
8 | BLENNERHASSETT, P. J., and BASSOM, A. P. The linear stability of flat Stokes layers. Journal of Fluid Mechanics, 464, 393- 410 (2002) |
9 | BLENNERHASSETT, P. J., and BASSOM, A. P. The linear stability of high-frequency oscillatory flow in a channel. Journal of Fluid Mechanics, 556, 1- 25 (2006) |
10 | OBREMSKI, H. J., and MORKOVIN, M. V. Application of a quasi-steady stability model to periodic boundary-layer flows. AIAA Journal, 7 (7), 1298- 1301 (1969) |
11 | COWLEY, S. J. High frequency Rayleigh instability of Stokes layers. Stability of Time Dependent and Spatially Varying Flows (ed(s). DWOYER, D. L. and HUSSAINI, M. Y.), Springer-Verlag, New York, 261-275 (1987) |
12 | COLLINS, J. I. Inception of turbulence at the bed under periodic gravity waves. Journal of Geophysical Research, 68 (21), 6007- 6014 (1963) |
13 | DAVIS, S. H., and KERCZEK, C. V. A reformulation of energy stability theory. Archive for Rational Mechanics and Analysis, 52, 112- 117 (1973) |
14 | CLAMEN, M., and MINTON, P. An experimental investigation of flow in an oscillating pipe. Journal of Fluid Mechanics, 81 (3), 421- 431 (1977) |
15 | MERKLI, P., and THOMANN, H. Transition to turbulence in oscillating pipe flow. Journal of Fluid Mechanics, 68 (3), 567- 576 (1975) |
16 | HINO, M., SAWAMOTO, M., and TAKASU, S. Experiments on transition to turbulence in an oscillatory pipe flow. Journal of Fluid Mechanics, 75 (2), 193- 207 (1976) |
17 | ECKMANN, D. M., and GROTBERG, J. B. Experiments on transition to turbulence in oscillatory pipe flow. Journal of Fluid Mechanics, 222, 329- 350 (1991) |
18 | THOMAS, C., BLENNERHASSETT, P. J., BASSOM, A. P., and DAVIS, C. The linear stability of a Stokes layer subjected to high-frequency perturbations. Journal of Fluid Mechanics, 764, 193- 218 (2015) |
19 | ZHAO, C., CHEN, Z. L., and LI, D. Instantaneous linear stability of plane Poiseuille flow forced by spanwise oscillations. Physics of Fluids, (4), 043608 (2019) |
20 | JOVANOVIC, M. R. Turbulence suppression in channel flows by small amplitude transverse wall oscillations. Physics of Fluids, 20 (1), 014101 (2008) |
21 | MASON, J. C., and HANDSCOMB, D. C. Chebyshev Polynomials, Chapman and Hall/CRC, New York 277- 311 (2002) |
[1] | N. AKHTAR;G. A. H. CHOWDHURY;S.K.SEN. Stokes flow before plane boundary with mixed stick-slip boundary conditions [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(6): 795-804. |
[2] | M.L.KAURANGIN;B.K.JHA. Unsteady generalized Couette flow in composite microchannel [J]. Applied Mathematics and Mechanics (English Edition), 2011, 32(1): 23-32. |
[3] | CHEN Zhong-Li;YOU Zhen-Jiang. New expression for collision efficiency of spherical nanoparticles in Brownian coagulation [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(7): 851-860. |
[4] | CHEN Bo;LI Xiao-Wei;LIU Gao-Lian. Constraint-induced restriction and extension operators with applications [J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(11): 1345-1352. |
[5] | LU Hua-jian;ZHANG Hui-sheng. MOTION AND DEFORMATION OF VISCOUS DROP IN STOKES FLOW NEAR RIGID WALL [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(12): 1634-1642 . |
[6] | F.Ayaz. AXISYMMETRIC FLOW THROUGH A PERMEABLE NEAR-SPHERE [J]. Applied Mathematics and Mechanics (English Edition), 2005, 26(10): 1319-1331 . |
[7] | N. Aktar;F. Rahman;S. K. Sen . STOKES FLOW DUE TO FUNDAMENTAL SINGULARITIES BEFORE A PLANE BOUNDARY [J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(7): 799-805. |
[8] | P. K. YADAV, A. TIWARI, P. SINGH. Motion through spherical droplet with non-homogenous porous layer in spherical container [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(7): 1069-1082. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||