[1] WANG, Y., LU, T., JIANG, P., CHENG, P., and WANG, K. Large-eddy simulation of fluid mixing in tee with sintered porous medium. Applied Mathematics and Mechanics (English Edition), 33(7), 911-922(2012) https://doi.org/10.1007/s10483-012-1594-9 [2] LU, Z., ZHANG, K., DING, H., and CHEN, L. Nonlinear vibration effects on the fatigue life of fluid-conveying pipes composed of axially functionally graded materials. Nonlinear Dynamics, 100, 1091-1104(2020) [3] TANG, Y., WANG, G., and DING, Q. Nonlinear fractional-order dynamic stability of fluidconveying pipes constituted by the viscoelastic materials with time-dependent velocity. Acta Mechanica Solida Sinica (2022) https://doi.org/10.1007/s10338-022-00328-1 [4] PÄIDOUSSIS, M. P. and SEMLER, C. Nonlinear dynamics of a fluid-conveying cantilevered pipe with an intermediate spring support. Journal of Fluids and Structures, 7, 269-298(1993) [5] DING, H., JI, J. C., and CHEN, L. Q. Nonlinear vibration isolation for fluid-conveying pipes using quasi-zero stiffness characteristics. Mechanical Systems and Signal Processing, 121, 675-688(2019) [6] LU, Z. Q., CHEN, L. Q., BRENNAN, M. J., YANG, T. J., DING, H., and LIU, Z. G. Stochastic resonance in a nonlinear mechanical vibration isolation system. Journal of Sound and Vibration, 370, 221-229(2016) [7] ZHAO, X. N., YANG, X. D., ZHANG, W., and PU, H. Active tuning of elastic wave propagation in a piezoelectric metamaterial beam. AIP Advances, 11, 065009(2021) [8] SONG, J., CHEN, W., GUO, S., and YAN, D. LQR control on multimode vortex-induced vibration of flexible riser undergoing shear flow. Marine Structures, 79, 103047(2021) [9] GENG, X. F., DING, H., WEI, K. X., and CHEN, L. Q. Suppression of multiple modal resonances of a cantilever beam by an impact damper. Applied Mathematics and Mechanics (English Edition), 41(3), 383-400(2020) https://doi.org/10.1007/s10483-020-2588-9 [10] TANG, Y., XU, J., and YANG, T. Natural dynamic characteristics of a circular cylindrical Timoshenko tube made of three-directional functionally graded material. Applied Mathematics and Mechanics (English Edition), 43(4), 479-496(2022) https://doi.org/10.1007/s10483-022-2839-6 [11] TUO, Y. H., FU, G. M., SUN, B. J., LOU, M., and SU, J. Stability of axially functionally graded pipe conveying fluid:generalized integral transform solution. Applied Ocean Research, 125, 103218(2022) [12] CHEN, J. E., ZHANG, W., LIU, J., and HU, W. Vibration absorption of parallel-coupled nonlinear energy sink under shock and harmonic excitations. Applied Mathematics and Mechanics (English Edition), 42(8), 1135-1154(2021) https://doi.org/10.1007/s10483-021-2757-6 [13] XUE, J., ZHANG, Y., DING, H., and CHEN, L. Vibration reduction evaluation of a linear system with a nonlinear energy sink under a harmonic and random excitation. Applied Mathematics and Mechanics (English Edition), 41(1), 1-14(2020) https://doi.org/10.1007/s10483-020-2560-6 [14] BI, K. and HAO, H. Using pipe-in-pipe systems for subsea pipeline vibration control. Engineering Structures, 109, 75-84(2016) [15] LYU, X., CHEN, F., REN, Q., TANG, Y., DING, Q., and YANG, T. Ultra-thin piezoelectric lattice for vibration suppression in pipe conveying fluid. Acta Mechanica Solida Sinica, 33, 770-780(2020) [16] RAHIMI, G. H., AREFI, M., and KHOSHGOFTAR, M. J. Application and analysis of functionally graded piezoelectrical rotating cylinder as mechanical sensor subjected to pressure and thermal loads. Applied Mathematics and Mechanics (English Edition), 32(8), 997-1008(2011) https://doi.org/10.1007/s10483-011-1475-6 [17] WAN, M., YIN, Y., LIU, J., and GUO, X. Active boundary control of vibrating marine riser with constrained input in three-dimensional space. Nonlinear Dynamics, 106, 2329-2345(2021) [18] MENG, H., SUN, X., XU, J., and WANG, F. Multimodal vibration suppression of nonlinear Euler-Bernoulli beam by multiple time-delayed vibration absorbers. Meccanica, 56, 2429-2449(2021) [19] TANG, D. M. and DOWELL, E. H. Chaotic oscillations of a cantilevered pipe conveying fluid. Journal of Fluids and Structures, 2, 263-283(1988) [20] SZMIDT, T. and PRZYBYLOWICZ, P. Critical flow velocity in a pipe with electromagnetic actuators. Journal of Theoretical and Applied Mechanics, 51, 487-496(2013) [21] KIM, Y., YUK, H., ZHAO, R., CHESTER, S. A., and ZHAO, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. nature, 558, 274-279(2018) [22] CHEN, W., WANG, L., and PENG, Z. A magnetic control method for large-deformation vibration of cantilevered pipe conveying fluid. Nonlinear Dynamics, 105, 1459-1481(2021) [23] DA VEIGA, T., CHANDLER, J. H., LLOYD, P., PITTIGLIO, G., WILKINSON, N. J., HOSHIAR, A. K., HARRIS, R. A., and VALDASTRI, P. Challenges of continuum robots in clinical context:a review. Progress in Biomedical Engineering, 2, 032003(2020) [24] DE OLIVEIRA BARROS, A., BHATTACHARYA, S., and YANG, J. Mechanics of magnetic robots akin to soft beams supported at unanchored contacts. Journal of Applied Mechanics, 88, 121005(2021) [25] ILAMI, M., AHMED, R. J., PETRAS, A., BEIGZADEH, B., and MARVI, H. Magnetic needle steering in soft phantom tissue. Scientific Reports, 10, 2500(2020) [26] WANG, L., ZHENG, D., HARKER, P., PATEL AMAN, B., GUO, C. F., and ZHAO, X. Evolutionary design of magnetic soft continuum robots. Proceedings of the National Academy of Sciences, 118, e2021922118(2021) [27] LIN, D., WANG, J., JIAO, N., WANG, Z., and LIU, L. A Flexible magnetically controlled continuum robot steering in the enlarged effective workspace with constraints for retrograde intrarenal surgery. Advanced Intelligent Systems, 3, 2000211(2021) [28] ZHOU, C., YANG, Y., WANG, J., WU, Q., GU, Z., ZHOU, Y., LIU, X., YANG, Y., TANG, H., LING, Q., WANG, L., and ZANG, J. Ferromagnetic soft catheter robots for minimally invasive bioprinting. Nature Communications, 12, 5072(2021) [29] STANGL, M., GERSTMAYR, J., and IRSCHIK, H. A Large deformation planar finite element for pipes conveying fluid based on the absolute nodal coordinate formulation. Journal of Computational and Nonlinear Dynamics, 4, 340-347(2009) [30] ZHOU, K., NI, Q., CHEN, W., DAI, H. L., HAGEDORN, P., and WANG, L. Static equilibrium configuration and nonlinear dynamics of slightly curved cantilevered pipe conveying fluid. Journal of Sound and Vibration, 490, 115711(2021) [31] SHABANA, A. A. Definition of the slopes and the finite element absolute nodal coordinate formulation. Multibody System Dynamics, 1, 339-348(1997) [32] BERZERI, M. and SHABANA, A. A. Development of simple models for the elastic forces in the absolute nodal co-ordinate formulation. Journal of Sound and Vibration, 235, 539-565(2000) [33] IRSCHIK, H. and HOLL, H. J. The equations of Lagrange written for a non-material volume. Acta Mechanica, 153, 231-248(2002) [34] SUGIYAMA, H., KOYAMA, H., and YAMASHITA, H. Gradient deficient curved beam element using the absolute nodal coordinate formulation. Journal of Computational & Nonlinear Dynamics, 5, 1090-1097(2010) [35] KIM, Y., PARADA, G. A., LIU, S., and ZHAO, X. Ferromagnetic soft continuum robots. Science Robotics, 4, eaax7329(2019) [36] ROTHON, R. Particulate-Filled Polymer Composites, iSmithers Rapra Publishing, Shrewsbury, 361-362(2003) |