[1] CHOI, S. U. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Proceedings of the ASME International Mechanical Engineering Congress and Exposition, 66, 99- 105(1995) [2] HOSSEINZADEH, K., AFSHARPANAH, F., ZAMANI, S., GHOLINIA, M., and GANJI, D. D. A numerical investigation on ethylene glycol-titanium dioxide nanofluid convective flow over a stretching sheet in presence of heat generation/absorption. Case Studies in Thermal Engineering, 12, 228-236(2018) [3] MAHANTHESH, B., LORENZINI, G., OUDINA, F. M., and ANIMASAUN, I. L. Significance of exponential space and thermal-dependent heat source effects on nanofluid flow due to radially elongated disk with Coriolis and Lorentz forces. Journal of Thermal Analysis and Calorimetry, 141, 37-44(2020) [4] MEBAREK-OUDINA, F. Convective heat transfer of titania nanofluids of different base fluids in cylindrical annulus with discrete heat source. Heat Transfer—Asian Research, 48(1), 135-147(2019) [5] ROŞCA, N. C., ROŞCA, A. V., POP, I., and MERKIN, J. H. Nanofluid flow by a permeable stretching/shrinking cylinder. Heat and Mass Transfer, 56(2), 547-557(2020) [6] CHEN, H., DING, Y., HE, Y., and TAN, C. Rheological behaviour of ethylene glycol based titania nanofluids. Chemical Physics Letters, 444(4-6), 333-337(2007) [7] CHEN, H., WITHARANA, S., JIN, Y., KIM, C., and DING, Y. Predicting thermal conductivity of liquid suspensions of nanoparticles (nanofluids) based on rheology. Particuology, 7(2), 151-157(2009) [8] ELLAHI, R., HASSAN, M., and ZEESHAN, A. Aggregation effects on water base Al2O3-nanofluid over permeable wedge in mixed convection. Asia-Pacific Journal of Chemical Engineering, 11(2), 179-186(2016) [9] BENOS, L. T., KARVELAS, E. G., and SARRIS, I. E. Crucial effect of aggregations in CNT-water nanofluid magnetohydrodynamic natural convection. Thermal Science and Engineering Progress, 11, 263-271(2019) [10] ACHARYA, N., DAS, K., and KUNDU, P. K. Effects of aggregation kinetics on nanoscale colloidal solution inside a rotating channel. Journal of Thermal Analysis and Calorimetry, 138(1), 461-477(2019) [11] MUKHOPADHYAY, S. and ISHAK, A. Mixed convection flow along a stretching cylinder in a thermally stratified medium. Journal of Applied Mathematics, 2012, 491695(2012) [12] MAHANTHESH, B., GIREESHA, B. J., GORLA, R. R., ABBASI, F. M., and SHEHZAD, S. A. Numerical solutions for magnetohydrodynamic flow of nanofluid over a bidirectional non-linear stretching surface with prescribed surface heat flux boundary. Journal of Magnetism and Magnetic Materials, 417, 189-196(2016) [13] HAYAT, T., QAYYUM, S., ALSAEDI, A., and ASGHAR, S. Radiation effects on the mixed convection flow induced by an inclined stretching cylinder with non-uniform heat source/sink. PLoS One, 12(4), e0175584(2017) [14] PANDEY, A. K. and KUMAR, M. Natural convection and thermal radiation influence on nanofluid flow over a stretching cylinder in a porous medium with viscous dissipation. Alexandria Engineering Journal, 56(1), 55-62(2017) [15] SHIT, G. C. and MUKHERJEE, S. MHD graphene-polydimethylsiloxane Maxwell nanofluid flow in a squeezing channel with thermal radiation effects. Applied Mathematics and Mechanics (English Edition), 40(9), 1269-1284(2019) https://doi.org/10.1007/s10483-019-2517-9 [16] MAHMOOD, T. and MERKIN, J. H. Similarity solutions in axisymmetric mixed-convection boundary-layer flow. Journal of Engineering Mathematics, 22(1), 73-92(1988) [17] ISHAK, A. Mixed convection boundary layer flow over a vertical cylinder with prescribed surface heat flux. Journal of Physics A: Mathematical and Theoretical, 42(19), 195501(2009) [18] RAMACHANDRAN, N., CHEN, T. S., and ARMALY, B. F. Mixed convection in stagnation flows adjacent to vertical surfaces. ASME Journal of Heat Transfer, 110(2), 373-377(1988) [19] MABOOD, F., LORENZINI, G., POCHAI, N., and IBRAHIM, S. M. Effects of prescribed heat flux and transpiration on MHD axisymmetric flow impinging on stretching cylinder. Continuum Mechanics and Thermodynamics, 28(6), 1925-1932(2016) |