[1] Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., and Tarantola, S. Global Sensitivity Analysis: the Primer, Wiley, England (2008)
[2] Saltelli, A. Sensitivity analysis for importance assessment. Risk Analysis, 22, 579-590 (2002)
[3] Sobol, I. M. Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment, 1, 407-414 (1993)
[4] Homma, T. and Saltelli, A. Importance measures in global sensitivity analysis of model output. Reliability Engineering and System Safety, 52, 1-17 (1996)
[5] Borgonovo, E. A new uncertainty importance measure. Reliability Engineering and System Safety, 92, 771-784 (2007)
[6] Saltelli, A. Making best use of model evaluations to compute sensitivity indices. Computer Physics Communication, 145, 280-297 (2002)
[7] Wei, P., Lu, Z., and Yuan, X. Monte Carlo simulation for moment-independent sensitivity analysis. Reliability Engineering and System Safety, 110, 60-67 (2013)
[8] Oakley, J. E. and O'Hagan, A. Probabilistic sensitivity analysis of complex models: a Bayesian approach. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 66, 751-769 (2004)
[9] Sudret, B. Global sensitivity analysis using polynomial chaos expansions. Reliability Engineering and System Safety, 93, 964-979 (2008)
[10] Xiu, D. and Karniadakis, G. E. The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM Journal on Scientific Computing, 24, 619-644 (2002)
[11] Le Maitre, O. P. and Knio, O. M. Spectral Methods for Uncertainty Quantification: with Applica-tions to Computational Fluid Dynamics, Springer, Netherlands (2010)
[12] Blatman, G. and Sudret, B. An adaptive algorithm to build up sparse polynomial chaos expansions for stochastic finite element analysis. Probabilistic Engineering Mechanics, 25, 183-197 (2010)
[13] Blatman, G. and Sudret, B. Efficient computation of global sensitivity indices using sparse polynomial chaos expansions. Reliability Engineering and System Safety, 95, 1216-1229 (2010)
[14] Blatman, G. and Sudret, B. Adaptive sparse polynomial chaos expansion based on least angle regression. Journal of Computational Physics, 230, 2345-2367 (2011)
[15] Cameron, R. and Martin, W. The orthogonal development of nonlinear functionals in series of Fourier-Hermite functionals. Annals of Mathematics, 48, 385-392 (1947)
[16] Field, R. V. Numerical methods to estimate the coefficients of the polynomial chaos expnsion. Proceedings of the 15th ASCE Engineering Mechanics Conference, ASCE, New York (2002)
[17] Choi, S. K., Grandhi, R. V., Canfield, R. A., and Pettit, C. L. Polynomial chaos expansion with Latin hypercube sampling for estimating response variability. AIAA Journal, 45, 1191-1198 (2004)
[18] Radovi?, I., Sobol, I. M., and Tichy, R. F. Quasi-Monte Carlo methods for numerical integration: comparison of different low discrepancy sequences. Monte Carlo Methods and Applications, 2, 1-14 (1996)
[19] Smolyak, S. A. Quadrature and interpolation formulas for tensor products of certain classes of functions. Soviet Mathematics Doklady, 4, 240-243 (1963)
[20] Foucart, S. and Rauhut, H. A Mathematical Introduction to Compressive Sensing, Springer, New York (2013)
[21] Doostan, A. and Owhadi, H. A non-adapted sparse approximation of PDEs with stochastic inputs. Journal of Computational Physics, 230, 3015-3034 (2011)
[22] Mathelin, L. and Callivan, K. A. A compressed sensing approach for partial differential equations with random input data. Communications in Computational Physics, 12, 919-954 (2012)
[23] Peng, J., Hampton, J., and Doostan, A. A weighted-minimization approach for sparse polynomial chaos expansions. Journal of Computational Physics, 267, 92-111 (2014)
[24] Tropp, J. A. and Wright, S. J. Computational methods for sparse solution of linear inverse problems. Proceedings of the IEEE, 98, 948-958 (2010)
[25] Mallat, S. and Zhang, Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 41, 3397-3415 (1993)
[26] Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. The 27th Annual Asilomar Conference on Signals, Systems and Computers, 1, 40-44 (1993)
[27] Davis, G., Mallat, S., and Avellaneda, M. Adaptive greedy approximation. Constructive Approx-imation, 13, 57-98 (1997)
[28] Needell, D. and Tropp, J. A. CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Applied and Computational Harmonic Analysis, 26, 301-321 (2009).
[29] Chen, S., Donoho, D., and Saunders, M. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20, 33-61 (1998)
[30] Chen, S., Donoho, D., and Saunders, M. Atomic decomposition by basis pursuit. SIAM Review, 43, 129-159 (2001)
[31] Donoho, D. L. and Tsaig, Y. Fast solution of l1-norm minimization problems when the solution may be sparse. IEEE Transactions on Information Theory, 54, 4789-4812 (2008)
[32] Van den Berg, E. and Friedlander, M. Probing the Pareto frontier for basis pursuit solutions. SIAM Journal on Scientific Computing, 31, 890-912 (2008)
[33] Daubechies, I., DeVore, R., Fornasier, M., and Güntürk, C. S. Iteratively reweighted least squares minimization for sparse recovery. Communications on Pure and Applied Mathematics, 63, 1-38 (2010)
[34] Efron, B., Hastie, T., Johnstone, I., and Tibshirani, R. Least angle regression. Annals of Statistics, 32, 407-499 (2004)
[35] Tipping, M. E. Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research, 1, 211-244 (2001)
[36] Wipf, D. and Rao, B. Sparse Bayesian learning for basis selection. IEEE Transactions on Signal Processing, 52, 2153-2164 (2004)
[37] Ji, S., Xue, Y., and Carin, L. Bayesian compressive sensing. IEEE Transactions on Signal Pro-cessing, 56, 2346-2356 (2008)
[38] Babacan, S. D., Molina, R., and Katsaggelos, A. K. Bayesian compressive sensing using Laplace priors. IEEE Transactions on Image Processing, 19, 53-63 (2010)
[39] Candès, E., Romberg, J., and Tao, T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Transactions on Information Theory, 52, 489-509 (2006)
[40] Donoho, D. L. Compressed sensing. IEEE Transactions on Information Theory, 52, 1289-1306 (2006)
[41] Birgin, E. G., Martínez, J. M., and Raydan, M. Inexact spectral projected gradient methods on convex sets. IMA Journal of Numerical Analysis, 23, 539-559 (2003)
[42] Tipping, M. and Faul, A. Fast marginal likelihood maximisation for sparse Bayesian models. Proceedings of the Ninth International Workshop on Artificial Intelligence and Statistics, Morgan Kaufmann Publishers, Florida (2003)
[43] Sobol, I. M., Turchaninov, V. I., Levitan, Y. L., and Shukhman, B. V. Quasi-Random Sequence Generators, Russian Acamdey of Sciences, Moscow (1992)
[44] Narayan, A. and Zhou, T. Stochastic collocation methods on unstructured meshes. Computer Physics Communication, 18, 1-36 (2015)
[45] Sobol, I. M. Theorems and examples on high dimensional model representation. Reliability Engi-neering and System Safety, 79, 187-193 (2003)
[46] Sod, G. A. A Survey of several finite difference methods for systems of nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27, 1-31 (1978) |