[1] Prandtl, L. Essentials of Fluid Dynamics, Blackie and Son, London, 422-425 (1952)
[2] Malm, J. Bottom buoyancy layer in an ice-covered lake. Water Resources Research, 34, 2981-2993 (1998)
[3] Gill, A. E. and Davey, A. Instabilities of a buoyancy-driven system. Journal of Fluid Mechanics, 35, 775-798 (1969)
[4] Iyer, P. A. Instabilities in buoyancy-driven boundary-layer flows in a stably stratified medium. Boundary-Layer Meteorology, 5, 53-66 (1973)
[5] McBain, G. D., Armfield, S. W., and Desrayaud, G. Instability of the buoyancy layer on an evenly heated vertical wall. Journal of Fluid Mechanics, 587, 453-469 (2007)
[6] Tao, J. and Busse, F. H. Oblique roll instability in inclined buoyancy layers. European Journal of Mechanics B/Fluids, 28, 532-540 (2009)
[7] Dudis, J. J. and Davis, S. H. Energy stability of the buoyancy boundary layer. Journal of Fluid Mechanics, 47, 381-403 (1971)
[8] Schmid, P. J. and Henningson, D. S. Stability and Transition in Shear Flows, Springer-Verlag, New York (2001)
[9] Butler, K. M. and Farrell, B. F. Three-dimensional optimal perturbations in viscous shear flow. Physics of Fluids A: Fluid Dynamics, 4, 1637-1650 (1992)
[10] Reddy, S. C., Schmid, P. J., and Henningson, D. S. Pseudospectra of the Orr-Sommerfeld operator. SIAM Journal on Applied Mathematics, 53, 15-47 (1993)
[11] Reddy, S. C. and Henningson, D. S. Energy growth in viscous channel flows. Journal of Fluid Mechanics, 252, 209-238 (1993)
[12] Galdi, G. P. and Padula, M. A new approach to energy theory in the stability of fluid motion. Archive for Rational Mechanics and Analysis, 110, 187-286 (1990)
[13] Straughan, B. The Energy Method, Stability, and Nonlinear Convection, 2nd ed., Springer-Verlag, New York (2004)
[14] Joseph, D. D. On the stability of the Boussinesq equations. Archive for Rational Mechanics and Analysis, 20, 59-71 (1965)
[15] Joseph, D. D. Stability of Fluid Motions II, Springer-Verlag, Berlin, 29-33 (1976)
[16] Dongarra, J. J., Straughan, B., and Walker, D. W. Chebyshev tau-QZ algorithm methods for calculating spectra of hydrodynamic stability problems. Applied Numerical Mathematics, 22, 399-434 (1996)
[17] Van Duijn, C. J., Wooding, R. A., and van der Ploeg, A. Stability Criteria for the Boundary Layer Formed by Throughflow at a Horizontal Surface of a Porous Medium: Extensive Version, Eindhoven University of Technology, Eindhoven (2001)
[18] Hardy, G. H. and Riesz, M. The General Theory of Dirichlet 's Series, Cambridge University Press, Cambridge (1915)
[19] Joseph, D. D. and Carmi, S. Stability of Poiseuille flow in pipes, annuli, and channels. Quarterly of Applied Mathematics, 26, 575-599 (1969)
[20] Busse, F. H. Bounds on the transport of mass and momentum by turbulent flow between parallel plates. Zeitschrift für angewandte Mathematik und Physik, 20, 1-14 (1969)
[21] Joseph, D. D. Nonlinear stability of the Boussinesq equations by the method of energy. Archive for Rational Mechanics and Analysis, 22, 163-184 (1966)
[22] Dudis, J. J. and Davis, S. H. Energy stability of the Ekman boundary layer. Journal of Fluid Mechanics, 47, 405-413 (1971)
[23] Orszag, S. A. Accurate solution of the Orr-Sommerfeld stability equation. Journal of Fluid Mechanics, 50, 689-703 (1971)
[24] Chevalier, M., Schlatter, P., Lundbladh, A., and Henningson, D. S. SIMSON: A Pseudo-Spectral Solver for Incompressible Boundary Layer Flows, KTH Mechanics, Stockholm (2007)
[25] Joseph, D. D. and Hung, W. Contributions to the nonlinear theory of stability of viscous flow in pipes and between rotating cylinders. Archive for Rational Mechanics and Analysis, 44, 1-22 (1971)
[26] Patel, V. C. and Head, M. R. Some observations on skin friction and velocity profiles in fully developed pipe and channel flows. Journal of Fluid Mechanics, 38, 181-201 (1969) |