[1] ABHARI, F., JAAFAR, H., and YUNUS, N. A. M. A comprehensive study of micropumps technologies. International Journal of Electrochemical Science, 7(10), 9765-9780(2012) [2] ANDRADE, D. and JOSEPH, D. Elimination of electroosmotic flow in analytical particle electrophoresis. ACS Applied Materials and Interfaces, 31, 225-240(1976) [3] JOSEPH, M. A., CAMPANERO, M. A., POPINEAU, Y., and IRACHE, J. M. Electrophoretic separation and characterisation of gliadin fractions from isolates and nanoparticulate drug delivery systems. Chromatographia, 50(3-4), 243-246(1999) [4] HEO, H. S., KANG, S., and YONG, K. S. An experimental study on the AC electroosmotic flow around a pair of electrodes in a microchannel. Journal of Mechanical Science and Technology, 21(12), 2237-2243(2007) [5] WANG, B., NITA, S., HORTON, J. H., and OLESCHUK, R. D. Surface Modification of PDMS for Control of Electroosmotic Flow:Characterization Using Atomic and Chemical Force Microscopy, Springer, Netherlands (2002) [6] CHANG, H. T., CHEN, H. S., HSIEH, M. M., and TSENG, W. L. Electrophoretic separation of DNA in the presence of electroosmotic flow. Reviews in Analytical Chemistry, 19(1), 45-74(2000) [7] LI, D. Electrokinetics in Microfluidics, Elsevier, Amsterdam (2004) [8] HUNTER, R. J. Zeta Potential in Colloid Science, Academic Press, New York (1981) [9] TANG, G. H., LI, X. F., HE, Y. L., and TAO, W. Q. Electroosmotic flow of non-Newtonian fluid in microchannels. Journal of Non-Newtonian Fluid Mechanics, 157(1-2), 133-137(2009) [10] TSAO, H. K. Electroosmotic flow through an annulus. Journal of Colloid and Interface Science, 225(1), 247-250(2000) [11] SHEHZAD, S. A., HAYAT, T., and ALSAEDI, A. Three-dimensional MHD flow of Casson fluid in porous medium with heat generation. Journal of Fluid Mechanics, 9(1), 215-223(2016) [12] FAROOQ, M., GULL, N., ALSAEDI, A., and HAYAT, T. MHD flow of a Jeffrey fluid with Newtonian heating. Journal of Mechanics, 31(3), 319-329(2015) [13] GIJS, M., LACHARME, F., and LEHMANN, U. Microfluidic applications of magnetic particles for biological analysis and catalysis. Chemical Reviews, 110(3), 1518-1563(2010) [14] BAU, H. H., ZHU, J., QIAN, S., and XIANG, Y. A magneto-hydrodynamically controlled fluidic network. Sensors and Actuators B:Chemical, 88(2), 205-216(2003) [15] JIAN, Y. Transient MHD heat transfer and entropy generation in a microparallel channel combined with pressure and electroosmotic effects. International Journal of Heat and Mass Transfer, 89, 193-205(2015) [16] JIAN, Y. and CHANG, L. Electromagnetohydrodynamic (EMHD) micropumps under a spatially non-uniform magnetic field. AIP Advances, 5(5), 057121(2015) [17] THURSTON, G. B. Viscoelasticity of human blood. Biophysical Journal, 12(9), 1205-1217(1972) [18] DING, Z. and JIAN, Y. Electrokinetic oscillatory flow and energy conversion of viscoelastic fluids in microchannels:a linear analysis. Journal of Fluid Mechanics, 919, 12517(2021) [19] TIAN, J., XIONG, R., SHEN, W., and WANG, J. A comparative study of fractional order models on state of charge estimation for lithium ion batteries. Chinese Journal of Mechanical Engineering, 33(51), 1-15(2020) [20] ABDULHAMEED, M., TAHIRU, A. G., and DAUDA, G. Y. Modeling electro-osmotic flow and thermal transport of Caputo fractional Burgers fluid through a micro-channel. Journal of Process Mechanical Engineering, 235(6), 2254-2270(2021) [21] OUZIZI, A., ABDOUN, F., and AZRAR, L. Nonlinear dynamics of beams on nonlinear fractional viscoelastic foundation subjected to moving load with variable speed. Journal of Sound and Vibration, 523, 116730(2022) [22] SONG, D. and JIANG, T. Study on the constitutive equation with fractional derivative for the viscoelastic fluids-modified Jeffreys model and its application. Rheologica Acta, 37(5), 512-517(1998) [23] GUO, X. and FU, Z. An initial and boundary value problem of fractional Jeffreys' fluid in a porous half space. Computers and Mathematics with Applications, 78(6), 1801-1810(2019) [24] GUO, X. and QI, H. Analytical solution of electroosmotic peristalsis of fractional Jeffreys fluid in a microchannel. Micromachines, 8(12), 341-255(2017) [25] XU, M. and TAN, W. Intermediate processes and critical phenomena:theory, method and progress of fractional operators and their applications to modern mechanics. Science in China Series G:Physics Mechanics and Astronomy, 49(3), 257-272(2006) [26] QI, H. and JIN, H. Unsteady helical flows of a generalized Oldroyd-B fluid with fractional derivative. Real World Applications, 10(5), 2700-2708(2009) [27] ABDULHAMEED, M., VIERU, D., and ROSLAN, R. Magnetohydrodynamic electroosmotic flow of Maxwell fluids with Caputo-Fabrizio derivatives through circular tubes. Computers and Mathematics with Applications, 74(10), 2503-2519(2017) [28] HAQ, S. U., KHAN, M. A., and SHAH, N. A. Analysis of magnetohydrodynamic flow of a fractional viscous fluid through a porous medium. Chinese Journal of Physics, 56(1), 261-269(2018) [29] BROCHARD, F. and DE GENNES, P. G. Shear-dependent slippage at a polymer/solid interface. Langmuir, 8(12), 3033-3037(1992) [30] DENN, M. M. Extrusion instabilities and wall slip. Annual Review of Fluid Mechanics, 33(1), 265-287(2001) [31] HERR, A. E., MOLHO, J. I., SANTIAGO, J. G., MUNGAL, M. G., KENNY, T. W., and GARGUILO, M. G. Electroosmotic capillary flow with nonuniform zeta potential. Analytical Chemistry, 72(5), 1053-1057(2000) [32] ZHANG, Y. L., CRASTER, R. V., and MATAR, O. K. Surfactant driven flows overlying a hydrophobic epithelium:film rupture in the presence of slip. Journal of Colloid and Interface Science, 264(1), 160-175(2003) [33] JIANG, Y., QI, H., XU, H., and JIANG, X. Transient electroosmotic slip flow of fractional Oldroyd-B fluids. Microfluidics and Nanofluidics, 21(1), 1-10(2017) [34] RAMESH, K., REDDY, M. G., and SOUAYEH, B. Electromagnetohydrodynamic flow of couple stress nanofluids in micro-peristaltic channel with slip and convective conditions. Applied Mathematics and Mechanics (English Edition), 42(4), 593-606(2021) https://doi.org/10.1007/s10483-021-2727-8 [35] ANWAR, T., KUMAM, P., KHAN, I., and THOUNTHONG, P. Thermal analysis of MHD convective slip transport of fractional Oldroyd-B fluid over a plate. Mechanics of Time-Dependent Materials, 1-32(2021) [36] TRIPATHI, D., BHUSHAN, S., and BÉG, O. A. Analyical study of elecrto-osmosis modulated capillary peristaltic hemodynamics. Journal of Mechanics in Medicine and Biology, 17(3), 1750052(2017) [37] SIDDIQUE, I. Exact solutions for the longitudinal flow of a generalized Maxwell fluid in a circular cylinder. Archives of Mechanics, 62(4), 305-317(2010) [38] Feng, C., SI, X., CAO, L., and ZHU, B. The slip flow generalized Maxwell fluids with timedistributed characteristics in a rotating microchannel. Applied Mathematics Letters, 120, 107260(2021) [39] WENCHANG, T., WENXIAO, P., and MINGYU, X. A note on unsteady flows of a viscoelastic fluid with the fractional Maxwell model between two parallel plates. International Journal of Non-Linear Mechanics, 38(5), 645-650(2003) [40] LI, D. Single-phase gaseous flows in microchannels. Springer Science and Business Media, 30, 3027-3037(2015) [41] DEL RÍO, J. A., DE HARO, M. L., and WHITAKER, S. Enhancement in the dynamic response of a viscoelastic fluid flowing in a tube. Physical Review E, 58(5), 6323-6327(1998) [42] MOGHADAM, A. J. Effect of periodic excitation on alternating current electroosmotic flow in a microannular channel. European Journal of Mechanics-B/Fluids, 48, 1-12(2014) [43] SCHIFF, J. L. The Laplace Transform:Theory and Applications, Springer Science and Business Media, New York (1999) [44] MASLIYAH, J. H. and BHATTACHARJEE, S. Electrokinetic and Colloid Transport Phenomena, Wiley-Interscience, New York (2006) [45] STYNES, M. and GRACIA, J. L. A finite difference method for a two-point boundary value problem with a Caputo fractional derivative. IMA Journal of Numerical Analysis, 35(2), 698-721(2013) [46] WANG, X., QI, H., YU, B., XIONG, Z., and XU, H. Analytical and numerical study of electroosmotic slip flows of fractional second grade fluids. Communications in Nonlinear Science and Numerical Simulation, 50, 77-87(2017) |