[1] Nalim, R., Pekkana, K., Sun, H. B., and Yokota, H. Oscillating Couette flow for in vitro cell loading. J. Biomech., 37, 939-942 (2004)
[2] Prasad, B. G. and Kumar, R. Unsteady hydromagnetic Couette flow through a porous medium in a rotating system. Theor. Appl. Mech. Lett., 1, 042005 (2011) DOI 10.1063/2.1104205
[3] Bég, O. A., Ghosh, S. K., and Narahari, M. Mathematical modeling of oscillatory MHD Couette flow in a rotating highly permeable medium permeated by an oblique magnetic field. Chem. Engin. Commun., 198, 235-254 (2010)
[4] Beg, O. A., Takhar, H. S., Zueco, J., Sajid, A., and Bhargava, R. Transient Couette flow in a rotating non-Darcian porous medium parallel plate configuration: network simulation method solutions. Acta Mech., 200, 129-144 (2008)
[5] Seth, G. S., Ansari, M. S., and Nandkeolyar, R. Effects of rotation and magnetic field on unsteady Couette flow in a porous channel. J. Appl. Fluid Mech., 4, 95-103 (2011)
[6] Seth, G. S., Hussain, S. M., and Singh, J. K. MHD Couette flow of class-II in a rotating system. J. Appl. Math. and Bioinformatics, 1, 31-54 (2011)
[7] Guria, M., Das, S., Jana, R. N., and Ghosh, S. K. Oscillatory Couette flow in the presence of inclined magnetic field. Meccanica, 44, 555-564 (2009)
[8] Greenspan, H. P. The Theory of Rotating Fluids, Cambridge University Press, Cambridge (1990)
[9] Batchelor, G. K. An Introduction to Fluid Dynamics, 1st ed., Cambridge University Press, Cam- bridge (1967)
[10] Fetecau, C., Fetecau, C., Kamran, M., and Vieru, D. Exact solutions for the flow of a generalized Oldroyd-B fluid induced by a constantly accelerating plate between two side walls perpendicular to the plate. Int. J. Non-Newtonian Fluid Mech., 156, 189-201 (2009)
[11] Abbasbandy, S., Hayat, T., Ghehsareh, H. R., and Alsaedi, A. MHD Falkner-Skan flow of a Maxwell fluid by rotational Chebyshev collocation method. Appl. Math. Mech. -Engl. Ed., 34(8), 921-930 (2013) DOI 10.1007/s10483-013-1717-7
[12] Xu, M. and Liao, S. J. Laminar flow and heat transfer in the boundary layer of non-Newtonian fluids over a stretching flat sheet. Comp. Math. Appl., 57, 1425-1431 (2009)
[13] Xue, C. F., Nie, J. X., and Tan, W. C. An exact solution of start up flow for the fractional generalized Burgers' fluid in a porous space. Nonlinear Anal. Theor. Meth. Appl., 69, 2086-2094 (2008)
[14] Wang, S. W. and Tan, W. C. Stability analysis of double-diffusive convection of Maxwell fluid in a porous medium heated from below. Phys. Lett. A, 372, 3046-3050 (2008)
[15] Zaimi, K., Ishak, A., and Pop, I. Stretching surface in rotating viscoelastic fluid. Appl. Math. Mech. -Engl. Ed., 34(8), 945-952 (2013) DOI 10.1007/s10483-013-1719-9
[16] Ariel, P. D. Two dimensional stagnation point flow of an elasto-viscous fluid with partial slip. Z. Angew. Math. Me. (ZAMM), 88, 320-324 (2008)
[17] Cortell, R. Analysing flow and heat transfer of a viscoelastic fluid over a semi-infinite horizontal moving flat plate. Int. J. Non-Linear Fluid Mech., 43, 772-778 (2008)
[18] Rajagopal, K. R. and Srinivas, A. R. On the development of fluid models of the differential type within a new thermodynamic framework. Mech. Res. Comm., 35, 483-489 (2008)
[19] Hayat, T. Exact solutions to rotating flows of a Burgers' fluid. Comput. Math. Appl., 52, 1413-1424 (2006)
[20] Ali, N., Hayat, T., and Asghar, S. Peristaltic flow of a Maxwell fluid in a channel with compliant walls. Chaos, Solitons and Fractals, 39, 407-416 (2009)
[21] Hayat, T., Kara, A. H., and Momoniat, E. Travelling wave solutions to Stokes' problem for a fourth grade fluid. Appl. Math. Model, 33, 1613-1619 (2009)
[22] Abelman, S., Momoniat, E., and Hayat, T. Steady MHD flow of a third grade fluid in a rotating frame and porous space. Nonlinear Anal.: Real World Appl., 10, 3322-3328 (2009)
[23] Shahzad, F., Hayat, T., and Ayub, M. Stokes' first problem for the rotating flow of a third grade fluid. Nonlinear Anal.: Real World Appl., 9, 1794-1799 (2008)
[24] Hayat, T., Khan, S. B., and Khan, M. The influence of Hall current on the rotating oscillating flows of an Oldroyd-B fluid in a porous medium. Nonlinear Dyn., 47, 353-362 (2007)
[25] Hayat, T. and Abelman, S. A numerical study of the influence of slip boundary condition on rotating flow. Int. J. Comput. Fluid Dyn., 21, 21-27 (2007)
[26] Abelman, S., Momoniat, E., and Hayat, T. Couette flow of a third grade fluid with rotating frame and slip condition. Nonlinear Anal.: Real World Appl., 10, 3329-3334 (2009)
[27] Hayat, T., Khan, S. B., and Khan, M. Exact solution for rotating flows of a generalized Burgers' fluid in a porous space. Appl. Math. Model, 32, 749-760 (2008)
[28] Hayat, T., Moitsheki, R. J., and Abelman, S. Stokes' first problem for Sisko fluid over a porous wall. Appl. Math. Comput., 217, 622-628 (2010)
[29] Hayat, T., Nadeem, S., and Asghar, S. Hydromagnetic Couette flow of an Oldroyd-B fluid in a rotating system. Int. J. Eng. Sci., 42, 65-78 (2004)
[30] Khan, M. and Farooq, J. On heat transfer analysis of a magnetohydrodynamic Sisko fluid through a porous medium. J. Porous Media, 13, 287-294 (2010)
[31] Rani, H. P., Reddy, G. J., and Kim, C. N. Transient analysis of diffusive chemical reactive species for couple stress fluid flow over vertical cylinder. Appl. Math. Mech. -Engl. Ed., 34(8), 985-1000 (2013) DOI 10.1007/s10483-013-1722-6
[32] Hayat, T., Shehzad, S. A., and Alsaedi, A. Three-dimensional stretched flow of Jeffrey fluid with variable thermal conductivity and thermal radiation. Appl. Math. Mech. -Engl. Ed., 34(7), 823- 832 (2013) DOI 10.1007/s10483-013-1710-7
[33] Hayat, T., Abelman, S., Harley, C., and Hendi, A. Stokes' first problem for a rotating Sisko fluid with porous space. J. Porous Media, 15, 1079-1091 (2012)
[34] Sajid, M. and Hayat, T. Series solution for steady flow of a third grade fluid through porous space. Trans. Porous Media, 71, 173-183 (2008)
[35] Das, S., Maji, S. L., Guria, M., and Jana, R. N. Unsteady MHD Couette flow in a rotating system. Math. Comput. Model., 50, 1211-1217 (2009)
[36] Hayat, T., Javed, M., and Ali, N. MHD peristaltic transport of a Jeffery fluid in a channel with compliant walls in porous space. Trans. Porous Media, 74, 259-274 (2008)
[37] Abbas, Z., Wang, Y., Hayat, T., and Oberlack, M. Hydromagnetic flow in a viscoelastic fluid due to the oscillatory stretching surface. J. Nonlinear Mech., 43, 783-793 (2008)
[38] Khan, M., Hayat, T., and Wang, Y. Slip effects on shearing flows in a porous medium. Acta Mech. Sin., 24, 51-59 (2008)
[39] Hayat, T., Mambili-Mamboundou, H., Momoniat, E., and Mahomed, F. M. M. The Rayleigh problem for a third grade electrically conducting fluid in a magnetic field. J. Nonlinear Math. Phys., 15, Suppl. 1, 77-90 (2008)
[40] Gozde, S., Pakdemirli, M., Hayat, T., and Aksoy, Y. Boundary layer equations and Lie group analysis of a Sisko fluid. J. Appl. Math., 2012, 259608 (2012) |