[1] Treloar, L. R. G. The Physics of Rubber Elasticity, Oxford University Press, Oxford (1975)
[2] Arruda, E. M. and Boyce, M. C. A three-dimensional constitutive model for the large stretch behaviour of rubber elastic materials. J. Mech. Phys. Solids, 41, 389-412 (1993)
[3] Boyce, M. C. Direct comparison of the Gent and the Arruda-Boyce constitutive models of rubber elasticity. Rubber Chem. Technol., 69, 781-785 (1996)
[4] Boyce, M. C. and Arruda, E. M. Constitutive models of rubber elasticity: a review. Rubber Chem. Technol., 73, 504-523 (2003)
[5] Fried, E. An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber elasticity. J. Mech. Phys. Solids, 50, 571-582 (2002)
[6] Miehe, C., Göktepe, S., and Lulei, F. A micro-macro approach to rubberlike materials-part I: the non-affine microsphere model of rubber elasticity. J. Mech. Phys. Solids, 52, 2617-2660 (2004)
[7] Diani, J. and Gilormini, P. Combining the logarithmic strain and the full-network model for a better understanding of the hyperelastic behaviour of rubber-like materials. J. Mech. Phys. Solids, 53, 2579-2596 (2005)
[8] Drozdov, A. D. and Gottlieb, M. Ogden-type constitutive equations in finite elasticity of elastomers. Acta Mechanica, 183, 231-252 (2006)
[9] Ogden, R. W., Saccomandi, G., and Sgura, I. On worm-like chain models within the threedimensional continuum mechanics framework. Proc. R. Soc. Lond. A, 462, 749-768 (2006)
[10] Ogden, R. W. Non-Linear Elastic Deformations, Ellis Horwood, Chichester (1984)
[11] Saccomandi, G. and Ogden, R. W. Mechanics and Thermomechanics of Rubberlike Solids. CISM Couses and Lectures No. 452, Springer, Vienna (2004)
[12] Vahapoglu, V. and Karadenitz, S. Constitutive equations for isotropic rubber-like materials using phenomenological approach: a bibliography (1930-2003). Rubber Chem. Technol., 79, 489-499 (2005)
[13] Gent, A. N. A new constitutive relation for rubber. Rubber Chem. Technol., 69, 59-61 (1996)
[14] Horgan, C. O. and Saccomandi, G. A molecular-statistical basis for the Gent constitutive model of rubber elasticity. J. Elasticity, 68, 167-176 (2002)
[15] Horgan, C. O. and Saccomandi, G. Finite thermoelasticity with limiting chain extensibility. J. Mech. Phys. Solids, 51, 1127-1146 (2003)
[16] Horgan, C. O. and Saccomandi, G. Phenomenological hyperelastic strain-stiffening constitutive models for rubber. Rubber Chem. Technol., 79, 1-18 (2006)
[17] Beatty, M. F. An average-stretch full-network model for rubber elasticity. J. Elasticity, 70, 65-86 (2003)
[18] Beatty, M. F. On constitutive models for limited elastic, molecular based materials. Math. Mech. Solids, 13, 375-387 (2008)
[19] Zuniga, A. E. and Beatty, M. F. Constitutive equations for amended non-Gaussian network models of rubber elasticity. Int. J. Engng. Sci., 40, 2265-2294 (2003)
[20] Gent, A. N. Extensibility of rubber under different types of deformation. J. Rheol., 49, 271-275 (2005)
[21] Murphy, J. G. Some remarks on kinematic modeling of limiting chain extensibility. Math. Mech. Solids, 11, 629-641 (2006)
[22] Zuniga, A. E. A non-Gaussian network model for rubber elasticity. Polymer, 47, 907-914 (2006)
[23] Horgan, C. O. and Murphy, J. G. Limiting chain extensibility constitutive models of Valanis- Landel type. J. Elasticity, 86, 101-111 (2007)
[24] Zhang, Y. Y., Li, H., Wang, X. M., Yin, Z. N., and Xiao, H. Direct determination of multi-axial elastic potentials for incompressible elastomeric solids: an accurate, explicit approach based on rational interpolation. Continuum Mech. Thermodyn., 26, 207-220 (2014)
[25] Zhang, Y. Y., Li, H., and Xiao, H. A further study of rubberlike elasticity: elastic potentials matching biaxial data. Appl. Math. Mech. -Engl. Ed., 35(1), 13-24 (2014) DOI 10.1007/s10483- 014-1768-x
[26] Xiao, H. An explicit, direct approach to obtaining multi-axial elastic potentials that exactly match data of four benchmark tests for rubberlike materials-part 1: incompressible deformations. Acta Mechanica, 223, 2039-2063 (2012)
[27] Hill, R. Constitutive inequalities for isotropic elastic solids under finite strain. Proc. Roy. Soc. London A, 326, 131-147 (1970)
[28] Anand, L. On H. Hencky's approximate strain-energy function for moderate deformations. J. Appl. Mech., 46, 78-82 (1979)
[29] Anand, L.Moderate deformations in extension-torsion of incompressible isotropic elastic materials. J. Mech. Phys. Solids, 34, 293-304 (1986)
[30] Fitzjerald, S. A tensorial Hencky measure of strain and strain rate for finite deformation. J. Appl. Phys., 51, 5111-5115 (1980)
[31] Criscione, J. C., Humphrey, J. D., Douglas, A. S., and Hunter, W. C. An invariant basis for natural strain which yields orthogonal stress response terms in isotropic hyperelasticity. J. Mech. Phys. Solids, 48, 2445-2465 (2000)
[32] Kakavas, P. A. A new development of the strain energy function for hyper-elastic materials using a logarithmic strain approach. J. Appl. Polym. Sci., 77, 660-672 (2000)
[33] Xiao, H. and Chen, L. S. Hencky's logarithmic strain measure and dual stress-strain and strainstress relations in isotropic finite hyperelasticity. Int. J. Solids Struct., 40, 1455-1463 (2003)
[34] Xiao, H., Bruhns, O. T., and Meyers, A. Explicit dual stress-strain and strain-stress relations of incompressible isotropic hyperelastic solids via deviatoric Hencky strain and Cauchy stress. Acta Mech., 168, 21-33 (2004)
[35] Aron, M. On certain deformation classes of compressible Hencky materials. Math. Mech. Solids, 19, 467-478 (2006)
[36] Horgan, C. O. and Murphy, J. G. A generalization of Hencky's strain-energy density to model the large deformation of slightly compressible solid rubber. Mech. Mater., 41, 943-950 (2009)
[37] Xiao, H. Hencky strain and Hencky model: extending history and ongoing tradition. Multidiscipline Modeling in Materials and Structures, 1, 1-52 (2005)
[38] Lopez-Pamies, O. A new I1-based hyperelastic model for rubber elastic materials. Comptes Rendus Mecanique, 338, 3-11 (2010)
[39] Lahellec, N., Mazerolle, F., and Michel, J. C. Second-order estimate of the macro-scopic behavior of periodic hyperelastic composites: theory and experimental validation. J. Mech. Phys. Solids, 52, 27-49 (2004)
[40] Jones, D. F. and Treloar, L. R. G. The properties of rubber in pure homogeneous strain. J. Phys. D, 8, 1285-1304 (1975) |