[1] Rabitz, H., Kramer, M., and Dacol, D. Sensitivity analysis in chemical kinetics. Annual Review of Physical Chemistry, 34, 419-461 (1983)
[2] Lutz, A. E., Kee, R. J., and Miller, J. A. Senkin: A Fortran Program for Predicting Homogeneous Gas Phase Chemical Kinetics with Sensitivity Analysis, Sandia National Laboratories, Livermere (1988)
[3] Lu, T. and Law, C. K. A directed relation graph method for mechanism reduction. Proceedings of the Combustion Institute, 30, 1333-1341 (2005)
[4] Sun, W., Chen, Z., and Gou, X. A path flux analysis method for the reduction of detailed chemical kinetic mechanisms. Combustion and Flame, 157, 1298-1307 (2010)
[5] Rao, C. V. and Arkin, A. P. Stochastic chemical kinetics and the quasi-steady-state assumption: application to the gillespie algorithm. The Journal of Chemical Physics, 118, 4999-5010 (2003)
[6] Rein, M. The partial equilibrium approximation in reacting flows. Physics of Fluids, A: Fluid Dynamics, 4, 873-886 (1992)
[7] Pierce, C. D. and Moin, P. Progress-variable approach for large-eddy simulation of non-premixed turbulent combustion. Journal of Fluid Mechanics, 504, 73-97 (2004)
[8] Vreman, A., Albrecht, B., and van Oijen, J. Premixed and nonpremixed generated manifolds in large-eddy simulation of sandia flame d and f. Combustion and Flame, 153, 394-416 (2008)
[9] Gicquel, O., Darabiha, N., and Thévenin, D. Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proceedings of the Combustion Institute, 28, 1901-1908 (2000)
[10] Bilger, R. W., Pope, S. B., and Bray, K. N. C. Paradigms in turbulent combustion research. Proceedings of the Combustion Institute, 30, 21-42 (2005)
[11] Vegendla, S. N. P. and Hasse, C. Steady flamelet progress-variable (FPV) modeling and simulation of a high-pressure gasifier. Energy and Fuels, 27, 7772-7777 (2013)
[12] Vegendla, S., Messig, D., and Weise, S. Flamelet-based time-scale analysis of a high-pressure gasifier. Energy and Fuels, 25, 3892-3899 (2011)
[13] Yilmaz, B., Ozdogan, S., and Gokalp, I. Numerical study on flame-front characteristics of conical turbulent lean premixed methane/air flames. Energy and Fuels, 23, 1843-1848 (2008)
[14] Albrecht, B., Zahirovic, S., and Bastiaans, R. A premixed flamelet-PDF model for biomass combustion in a grate furnace. Energy and Fuels, 22, 1570-1580 (2008)
[15] Ihme, M. and See, Y. C. LES flamelet modeling of a three-stream mild combustor: analysis of flame sensitivity to scalar inflow conditions. Proceedings of the Combustion Institute, 33, 1309- 1317 (2011)
[16] Vervisch, L., Hauguel, R., and Domingo, P. Three facets of turbulent combustion modelling: DNS of premixed v-flame, LES of lifted nonpremixed flame and RANS of jet-flame. Journal of Turbulence, 5, 1-8 (2004)
[17] Ihme, M., Shunn, L., and Zhang, J. Regularization of reaction progress variable for application to flamelet-based combustion models. Journal of Computational Physics, 231, 7715-7721 (2012)
[18] Niu, Y. S., Vervisch, L., and Tao, P. D. An optimization-based approach to detailed chemistry tabulation: automated progress variable definition. Combustion and Flame, 160, 776-785 (2013)
[19] Farcy, B., Abou-Taouk, A., Vervisch, L., Domingo, P., and Perret, N. Two approaches of chemistry downsizing for simulating selective noncatalytic reduction DeNOx process. Fuel, 118, 291-299 (2014)
[20] Ribert, G., Vervisch, L., and Domingo, P. Hybrid transported-tabulated strategy to downsize detailed chemistry for numerical simulation of premixed flames. Flow, Turbulence and Combustion, 92, 175-200 (2014)
[21] Abdi, H. and Williams, L. J. Principal component analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 2, 433-459 (2010)
[22] Moore, B. Principal component analysis in linear systems: controllability, observability, and model reduction. IEEE Transactions on Automatic Control, 26, 17-32 (1981)
[23] Parente, A., Sutherland, J. C., and Tognotti, L. Identification of low-dimensional manifolds in turbulent flames. Proceedings of the Combustion Institute, 32, 1579-1586 (2009)
[24] Parente, A., Sutherland, J., and Dally, B. B. Investigation of the mild combustion regime via principal component analysis. Proceedings of the Combustion Institute, 33, 3333-3341 (2011)
[25] Sutherland, J. C. and Parente, A. Combustion modeling using principal component analysis. Proceedings of the Combustion Institute, 32, 1563-1570 (2009)
[26] Isaac, B., Parente, A., Smith, P., Fru, G., and Thevenin, D. Source term parameterization for PCA combustion modelling. Proceedings of the European Combustion Meeting, Lund University Press, Sweden (2013)
[27] Biglari, A. and Sutherland, J. C. A filter-independent model identification technique for turbulent combustion modeling. Combustion and Flame, 159, 1960-1970 (2012)
[28] Coussement, A., Gicquel, O., and Parente, A. MG-local-PCA method for reduced order combustion modeling. Proceedings of the Combustion Institute, 34, 1117-1123 (2013)
[29] Najafi-Yazdi, A., Cuenot, B., and Mongeau, L. Systematic definition of progress variables and intrinsically low-dimensional, flamelet generated manifolds for chemistry tabulation. Combustion and Flame, 159, 1197-1204 (2012)
[30] Coussement, A., Gicquel, O., and Parente, A. Kernel density weighted principal component analysis of combustion processes. Combustion and Flame, 159, 2844-2855 (2012)
[31] Mirgolbabaei, H., Echekki, T., and Smaoui, N. A nonlinear principal component analysis approach for turbulent combustion composition space. International Journal of Hydrogen Energy, 39, 4622- 4633 (2014)
[32] Schlkopf, B., Smola, A., and Mjller, K. R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10, 1299-1319 (1998)
[33] Parzen, E. On estimation of a probability density function and mode. Annals of Mathematical Statistics, 33, 1065-1076 (1962)
[34] Schlkopf, B., Tsuda, K., and Vert, J. P. Kernel Methods in Computational Biology, MIT Press, Cambridge (2004)
[35] Silverman, B. W. Density Estimation for Statistics and Data Analysis, CRC Press, Boca Raton, Florida (1986)
[36] Jha, P. K. and Groth, C. P. T. Tabulated chemistry approaches for laminar flames: evaluation of flame-prolongation of ILDM and flamelet methods. Combustion Theory and Modelling, 16, 31-57 (2011)
[37] Bennett, B. A. V., Mcenally, C. S., Pfefferle, L. D., and Smooke, M. D. Computational and experimental study of axisymmetric coflow partially premixed methane/air flames. Combustion and Flame, 123, 522-546 (2000)
[38] Schwer, D. A., Lu, P., and Green, W. H., Jr. An adaptive chemistry approach to modeling complex kinetics in reacting flows. Combustion and Flame, 133, 451-465 (2003)
[39] Ray, J., Najm, H, N., and Mildne, R. B. Triple flame structure and dynamics at the stabilization point of an unsteady lifted jet diffusion flame. Proceedings of the Combustion Institute, 28, 219-226 (2000)
[40] Grtzbach, G. Spatial resolution requirements for direct numerical simulation of the RayleighBWnard convection. Journal of Computational Physics, 49, 241-264 (1983)
[41] Smith, G. P., Golden, D. M., and Frenklach, M. GRI-MECH: an Optimized Detailed Chemical Reaction Mechanism for Methane Combustion, Sandia National Laboratories Report, SAND-898009B, New Mexico (1999)
[42] Kee, R. J., Rupley, F. M., and Meeks, E. Chemkin-III: a FORTRAN Chemical Kinetics Package for the Analysis of Gas-phase Chemical and Plasma Kinetics, Sandia National Laboratories, New Mexico (1996)
[43] Bilger, R. W., Starner, S. H., and Kee, R. J. On reduced mechanisms for methane air combustion in nonpremixed flames. Combustion and Flame, 80, 135-149 (1990) |