[1] Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951-1953(1984)
[2] Fujiwara, T., Laissardiere, G. T., and Yamamoto, S. Electronic structure and electron transport in quasicrystals. Materials Science Forum, 150-151, 387-394(1994)
[3] Ding, D. H., Yang, W. G., Hu, C. Z., and Wang, R. Generalized elasticity theory of quasicrystals. Physical Review B, 48, 7003-7009(1993)
[4] Yang, W. G., Wang, R. H., Ding, D. H., and Hu, C. Linear elasticity theory of cubic quasicrystals. Physical Review B, 48, 6999-7002(1993)
[5] Hu, C., Wang, R., Yang, W., and Ding, D. Point groups and elastic properties of two-dimensional quasicrystals. Acta Crystallographica, 52, 251-256(1996)
[6] Hu, C. Z., Wang, R., and Ding, D. H. Symmetry groups, physical property tensors, elasticity and dislocations in quasicrystals. Reports on Progress in Physics, 63, 1-1(2000)
[7] Fan, T. Y. and Mai, Y. W. Elasticity theory fracture mechanics and some relevant thermal properties of quasi-crystalline materials. Applied Mechanics Reviews, 57, 325-343(2004)
[8] Fan, T. Y. and Guo, L. H. The final governing equation and fundamental solution of plane elasticity of icosahedral quasicrystals. Physics Letters A, 341, 235-239(2005)
[9] Thiel, P. A. and Dubois, J. M. Quasicrystals reaching maturity for technological applications. Materials Today, 2, 3-7(1999)
[10] Park, J. Y., Sacha, G. M, Enachescu, M., Ogletree, D. F., Ribeiro, R. A., Canfield, P. C., Genks, C. J., Thiel, P. A., Saenz, J. J., and Salmeron, M. Sensing dipole fields at atomic steps with combined scanning tunneling and force microscopy. Physical Review Letters, 95, 136802(2005)
[11] Engel, M., Umezaki, M., Trebin, H. R., and Odagaki, T. Dynamics of particle flips in twodimensional quasicrystals. Physical Review B Condensed Matter, 82, 087201(2010)
[12] Sakly, A., Kenzari, S., Bonina, D., Corbel, S., Fournee, V. A novel quasicrystal-resin composite for stereolithography. Materials and Design, 56, 280-285(2014)
[13] Guo, X. P., Chen, J. F., Yu, H. L., Liao, H., and Coddet, C. A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surface and Coatings Technology, 268, 94-98(2015)
[14] Zhang, Y., Zhang, J., Wu, G. H., Liu, W. C., Zhang, L., and Ding, W. J. Microstructure and tensile properties of as-extruded Mg-Li-Zn-Gd alloys reinforced with icosahedral quasicrystal phase. Materials and Design, 66, 162-168(2015)
[15] Tian, Y., Huang, H., Yuan, G. Y., Chen, C. L., Wang, Z. C., and Ding, W. J. Nanoscale icosahedral quasicrystal phase precipitation mechanism during annealing for Mg-Zn-Gd based alloys. Materials Letters, 130, 236-239(2014)
[16] Zhang, D. L. Electronic properties of stable decagonal quasicrystals. Physical Status Solidi A, 207, 2666-2673(2010)
[17] Yang, W. G., Wang, R., Ding, D. H., and Hu, C. Elastic strains induced by electric fields in quasicrystals. Physics Condensed Matter, 7, L499-L502(1995)
[18] Li, C. L. and Liu, Y. Y. The physical property tensors of one dimensional quasicrystals. Chinese Physics B, 13, 924-931(2004)
[19] Rao, K. R. M., Rao, P. H., and Chaitanya, B. S. K. Piezoelectricity in quasicrystals:a grouptheoretical study. Pramana -Journal of Physics, 68, 481-487(2007)
[20] Altay, G. and Dökmeci, M. C. On the fundamental equations of piezoelasticity of quasicrystal media. International Journal of Solids and Structures, 49, 3255-3262(2012)
[21] Grimmer, H. The piezoelectric effect of second order in stress or strain:its form for crystals and quasicrystals of any symmetry. Acta Crystallographica, 63, 441-446(2007)
[22] Zhang, L. L., Zhang, Y. T., and Gao, Y. General solutions of plane elasticity of one-dimensional orthorhombic quasicrystals with piezoelectric effect. Physics Letters A,378, 2768-2776(2014)
[23] Yang, J. and Li, X. Analytic solutions of problem about a circular hole with a straight crack in one-dimensional hexagonal quasicrystals with piezoelectric effects. Theoretical Applied Fracture Mechanics, 82, 17-24(2015)
[24] Li, X. Y., Li, P. D., Wu, T. H., Shi, M. X., and Zhu, Z. W. Three dimensional fundamental solutions for one-dimensional hexagonal quasicrystal with piezoelectric effect. Physics Letters A, 378, 826-834(2014)
[25] Yu, J., Guo, J. H., Pan, E., and Xing, Y. General solutions of one-dimensional quasicrystal piezoelectric materials and its application on fracture mechanics. Applied Mathematics and Mechanics (English Edition), 36(6), 793-814(2015) https://doi.org/10.1007/s10483-015-1949-6
[26] Yu, J., Guo, J. H., and Xing, Y. M. Complex variable method for an anti-plane elliptical cavity of one-dimensional hexagonal piezoelectric quasicrystals. Chinese Journal of Aeronautics, 28, 1287-1295(2015)
[27] Zhang, L. L., Wu, D., Xu, W. S., Yang, L. Z., Ricoeur, A., Wang, Z. B., and Gao, Y. Green's functions of one-dimensional quasicrystal bi-material with piezoelectric effect. Physics Letters A, 380, 3222-3228(2016)
[28] Dunn, M. L. and Taya, M. Micromechanics predictions of the effective electroelastic moduli of piezoelectric composites. International Journal of Solids and Structures, 30, 161-175(1993)
[29] Christensen, R. M. and Lo, K. H. Solutions for effective shear properties in three phase sphere and cylinder models. Journal of the Mechanics and Physics of Solids, 27, 315-330(1979)
[30] Huang, Y., Hu, K. X., Wei, X., and Chandra, A. A generalized self-consistent mechanics method for composite materials with multiphase inclusion. Journal of the Mechanics and Physics of Solids, 42, 491-504(1994)
[31] Jiang, C. P., Tong, Z. H., and Cheung, Y. K. A generalized self-consistent method for piezoelectric fiber reinforced composites under antiplane shear. Mechanics of Materials, 33, 295-308(2001)
[32] Guo, J. H., Zhang, Z. Y., and Xing, Y. M. Antiplane analysis for an elliptical inclusion in 1D hexagonal piezoelectric quasicrystal composites. Philosophical Magazine, 96, 349-369(2016)
[33] Guo, J. H. and Pan, E. Three-phase cylinder model of one-dimensional hexagonal piezoelectric quasi-crystal composites. Journal of Applied Mechanics, 83, 081007(2016)
[34] Chen, F. L. and Jiang, C. P. A three-phase confocal elliptical cylinder model for predicting the thermal conductivity of composites. Proceedings of SPIE-The International Society for Optical Engineering, 74936(2009)
[35] Xiao, J. H., Xu, Y. L., and Zhang, F. C. A generalized self-consistent method for nano composites accounting for fiber section shape under antiplane shear. Mechanics of Materials, 81, 94-100(2015)
[36] Muskhelishvili, N. I. Some Basic Problems of the Mathematical Theory of Elasticity, Springer, Holland (1953)
[37] Jiang, C. P. and Cheung, Y. K. A fiber/matrix/composite model with a combined conformal elliptical cylinder unit cell for predicting the effective longitudinal shear modulus. International Journal of Solids and Structures, 35, 3977-3987(1998)
[38] Whitney, J. M. and Riley, M. B. Elastic properties of fiber reinforced composite materials. AIAA Journal, 4, 1537-1542(1966)
[39] Shari, H. Z. and Chou, T. W. Transverse elastic moduli of unidirectional fiber composites with fiber/matrix interfacial debonding. Metallurgical Transactions A, 53, 383-391(1995)
[40] Fang, X. Q., Huang, M. J., Liu, J. X., and Feng, W. J. Dynamic effective property of piezoelectric composites with coated piezoelectric nano-fibers. Composites Science and Technology, 98, 79-85(2014) |