[1] Robinson, D. L., Kersh, M. E., Walsh, N. C., Ackland, D. C., de Steiger, R. N., and Pandy, M. G. Mechanical properties of normal and osteoarthritic human articular cartilage. Journal of the Mechanical Behavior of Biomedical Materials, 61, 96-109(2016)
[2] Mow, V. C., Kuei, S., Lai, W. M., and Armstrong, C. G. Biphasic creep and stress relaxation of articular cartilage in compression:theory and experiments. Journal of Biomechanical Engineering, 102, 73-84(1980)
[3] Frank, E. H. and Grodzinsky, A. J. Cartilage electromechanics-Ⅱ, a continuum model of cartilage electrokinetics and correlation with experiments. Journal of Biomechanics, 20, 629-639(1987)
[4] Ateshian, G. A., Warden, W. H., Kim, J. J., Grelsamer, R. P., and Mow, V. C. Finite deformation biphasic material properties of bovine articular cartilage from confined compression experiments. Journal of Biomechanics, 30, 1157-1164(1997)
[5] Soulhat, J., Buschmann, M. D., and Shiraziadl, A. A fibril-network-reinforced biphasic model of cartilage in unconfined compression. Journal of Biomechanical Engineering, 121, 340-347(1999)
[6] Cohen, B., Lai, W. M., and Mow, V. C. A transversely isotropic biphasic model for unconfined compression of growth plate and chondroepiphysis. Journal of Biomechanical Engineering, 120, 491-496(1998)
[7] Cohen, B., Gardner, T., and Ateshian, G. The influence of transverse isotropy on cartilage indentation behavior-a study of the human humeral head. Orthopaedic Research Society, 18, 185(1993)
[8] Mow, V., Good, P., and Gardner, T. A new method to determine the tensile properties of articular cartilage using the indentation test. Orthopaedic Research Society, 25, 0103(2000)
[9] Lai, W. M., Hou, J., and Mow, V. C. A triphasic theory for the swelling and deformation behaviors of articular cartilage. Journal of Biomechanical Engineering, 113, 245-258(1991)
[10] Gu, W., Lai, W., and Mow, V. Transport of multi-electrolytes in charged hydrated biological soft tissues. Porous Media:Theory and Experiments, Springer, Berlin (1999)
[11] Linn, F. C. and Sokoloff, L. Movement and composition of interstitial fluid of cartilage. Arthritis and Rheumatology, 8, 481-494(1965)
[12] Greene, G. W., Zappone, B., Söderman, O., Topgaard, D., Rata, G., Zeng, H., and Israelachvili, J. N. Anisotropic dynamic changes in the pore network structure, fluid diffusion and fluid flow in articular cartilage under compression. Biomaterials, 31, 3117-3128(2010)
[13] Mow, V. C., Wang, C. C., and Hung, C. T. The extracellular matrix, interstitial fluid and ions as a mechanical signal transducer in articular cartilage. Osteoarthr and Cartilage, 7, 41-58(1999)
[14] Makela, J. T. and Korhonen, R. K. Highly nonlinear stress-relaxation response of articular cartilage in indentation:importance of collagen nonlinearity. Journal of Biomechanics, 49, 1734-1741(2016)
[15] Guo, H. and Torzilli, P. A. Shape of chondrocytes within articular cartilage affects the solid but not the fluid microenvironment under unconfined compression. Acta Biomaterialia, 29, 170-179(2016)
[16] Cilingir, A. C. Effect of rotational and sliding motions on friction and degeneration of articular cartilage under dry and wet friction. Journal of Bionic Engineering, 12, 464-472(2015)
[17] Fujie, H. and Imade, K. Effects of low tangential permeability in the superficial layer on the frictional property of articular cartilage. Biosurface and Biotribology, 1, 124-129(2015)
[18] Speirs, A. D., Beaulé, P. E., Ferguson, S. J., and Frei, H. Stress distribution and consolidation in cartilage constituents is influenced by cyclic loading and osteoarthritic degeneration. Journal of Biomechanics, 47, 2348-2353(2014)
[19] Ateshian, G. A. and Wang, H. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Journal of Biomechanics, 28, 1341-1355(1995)
[20] Soltz, M. A. and Ateshian, G. A. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of Biomechanics, 31, 927-934(1998)
[21] Cheng, A. D. Material coefficients of anisotropic poroelasticity. International Journal of Rock Mechanics and Mining Sciences, 34, 199-205(1997)
[22] Abousleiman, Y. and Cui, L. Poroelastic solutions in transversely isotropic media for wellbore and cylinder. International Journal of Solids and Structures, 35, 4905-4929(1998)
[23] Cowin, S. C. Bone poroelasticity. Journal of Biomechanics, 32, 217-238(1999)
[24] Lian, Q., Chen, C., Uwayezu, M. C., Zhang, W., Bian, W., Wang, J., and Jin, Z. Biphasic mechanical properties of in vivo repaired cartilage. Journal of Bionic Engineering, 12, 473-482(2015)
[25] Ateshian, G. A. and Wang, H. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers. Journal of Biomechanics, 28, 1341-1355(1995)
[26] Soltz, M. A. and Ateshian, G. A. Experimental verification and theoretical prediction of cartilage interstitial fluid pressurization at an impermeable contact interface in confined compression. Journal of Biomechanics, 31, 927-934(1998)
[27] Bachrach, N. M., Mow, V. C., and Guilak, F. Incompressibility of the solid matrix of articular cartilage under high hydrostatic pressures. Journal of Biomechanics, 31, 445-451(1998)
[28] Fujie, H. and Imade, K. Effects of low tangential permeability in the superficial layer on the frictional property of articular cartilage. Biosurface and Biotribology, 1, 124-129(2015)
[29] Wu, X. G. and Chen, W. Y. A hollow osteon model for examining its poroelastic behaviors:mathematically modeling an osteon with different boundary cases. European Journal of MechanicsA/Solids, 40, 34-49(2013)
[30] Cen, H. P., Wu, X. G., Yu, M. L., Liu, Q. Z., and Jia, Y. M. Effects of the microcrack shape, size and direction on the poroelastic behaviors of a single osteon:a finite element study. Acta of Bioengineering and Biomechanics/Wroclaw University of Technology, 18, 3-10(2016)
[31] Wu, X. G., Yu, W. L., Cen, H. P., Wang, Y. Q., Guo, Y., and Chen, W. Y. Hierarchical model for strain generalized streaming potential induced by the canalicular fluid flow of an osteon. Acta Mechanica Sinica, 31, 112-121(2015) |