[1] Inamuro, T., Ogata, T., and Ogino, F. Numerical simulation of bubble flows by the lattice Boltzmann method. Future Generation Computer Systems, 20(6), 959-964(2004)
[2] Chen, S., Dawson, S. P., Doolen, G. D., Janecky, D. R., and Lawniczak, A. Lattice methods and their applications to reacting systems. Computers and Chemical Engineering, 19(6), 617-646(1995)
[3] Li, B. and Kwok, D. Y. A lattice Boltzmann model for electrokinetic microchannel flow of electrolyte solution in the presence of external forces with the Poisson-Boltzmann equation. International Journal of Heat and Mass Transfer, 46(22), 4235-4244(2003)
[4] Guo, Z. and Zhao, T. S. Lattice Boltzmann model for incompressible flows through porous media. Physical Review E, 66(3), 036304(2002)
[5] Jameson, A. Aerodynamic design via control theory. Journal of Scientific Computing, 3(3), 233-260(1988)
[6] Reuther, J. and Jameson, A. Control theory based airfoil design using the Euler equations. 5th Symposium on Multidisciplinary Analysis and Optimization, American Institute of Aeronautics and Astronautics, Reston (1984)
[7] Jameson, A. and Baker, T. J. Multigrid solution of the Euler equations for aircraft configurations. 22nd Aerospace Sciences Meeting, Aerospace Sciences Meetings, American Institute of Aeronautics and Astronautics, Reston (1984)
[8] Jameson, A., Martinelli, L., and Pierce, N. A. Optimum aerodynamic design using the NavierStokes equations. Theoretical and Computational Fluid Dynamics, 10(1-4), 213-237(1998)
[9] Kim, S., Alonso, J. J., and Jameson, A. A gradient accuracy study for the adjoint-based NavierStokes design method. 37th Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, Reston (1999)
[10] Anderson, W. K. and Venkatakrishnan, V. Aerodynamic design optimization on unstructured grids with a continuous adjoint formulation. Computers and Fluids, 28(4), 443-480(1999)
[11] Pingen, G., Evgrafov, A., and Maute, K. Topology optimization of flow domains using the lattice Boltzmann method. Structural and Multidisciplinary Optimization, 34(6), 507-524(2007)
[12] Evgrafov, A., Pingen, G., and Maute, K. Topology optimization of fluid problems by the lattice Boltzmann method. IUTAM Symposium on Topological Design Optimization of Structures, Machines and Materials, Springer, the Netherlands, 559-568(2006)
[13] Pingen, G., Waidmann, M., Evgrafov, A., and Maute, K. A parametric level-set approach for topology optimization of flow domains. Structural and Multidisciplinary Optimization, 41(1), 117-131(2010)
[14] Pingen, G., Evgrafov, A., and Maute, K. Adjoint parameter sensitivity analysis for the hydrodynamic lattice Boltzmann method with applications to design optimization. Computers and Fluids, 38(4), 910-923(2009)
[15] Yaji, K., Yamada, T., Yoshino, M., Mausumoto, T., Izui, K., and Nishiwaki, S. Topology optimization using the lattice Boltzmann method incorporating level set boundary expressions. Journal of Computational Physics, 274, 158-181(2014)
[16] Ngnotchouye, J. M. T., Herty, M., Steffensen, S., and Banda, M. K. Relaxation approaches to the optimal control of the Euler equations. Computational and Applied Mathematics, 30(2), 399-425(2011)
[17] Qian, Y. H., d'Humières, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. Europhysics Letters, 17(6), 479-484(1992)
[18] Guo, Z. L., Zheng, C. G., and Shi, B. C. Non-equilibrium extrapolation method for velocity and pressure boundary conditions in the lattice Boltzmann method. Chinese Physics, 11(4), 366-374(2002)
[19] Imamura, T., Suzuki, K., Nakamura, T., and Yoshida, M. Flow simulation around an airfoil by lattice Boltzmann method on generalized coordinates. AIAA Journal, 43(9), 1968-1973(2005) |