[1] RICHARDSON, L. F. Weather Prediction by Numerical Process, Cambridge University Press, Cambridge (2007) [2] KOLMOGOROV, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings:Mathematical and Physical Sciences, 30, 301(1941) [3] KOLMOGOROV, A. N. On the degeneration of isotropic turbulence in an incompressible viscous fluid. Doklady Akademii Nauk SSSR, 31, 319-323(1941) [4] KOLMOGOROV, A. N. Dissipation of energy in locally isotropic turbulence. Proceedings:Mathematical and Physical Sciences, 434, 15-17(1991) [5] HILL, R. Exact second-order structure function relationship. Journal of Fluid Mechanics, 468, 317-326(2002) [6] MARATI, N., CASCIOLA, C., and PIVA, R. Energy cascade and spatial fluxes in wall turbulence. Journal of Fluid Mechanics, 521, 191-215(2004) [7] DANAILA, L., KRAWCZYNSKI, J., THIESSET, F., and RENOU, B. Yaglom-like equation in axisymmetric anisotropic turbulence. Physica D:Nonlinear Phenomena, 241, 216-223(2012) [8] VALENTE, P. and VASSILICOS, J. The energy cascade in grid-generated non-equilibrium decaying turbulence. Physics of Fluids, 27, 045103(2015) [9] SEOUD, R. and VASSILICOS, J. Dissipation and decay of fractal-generated turbulence. Physics of Fluids, 19, 105108(2007) [10] MAZELLIER, N. and VASSILICOS, J. Turbulence without Richardson-Kolmogorov cascade. Physics of Fluids, 22, 075101(2010) [11] NAGATA, K., SAKAI, Y., INABA, T., SUZUKI, H., TERASHIMA, O., and SUZUKI, H. Turbulence structure and turbulence kinetic energy transport in multiscale/fractal-generated turbulence. Physics of Fluids, 25, 065102(2013) [12] GOMES-FERNANDES, R., GANAPATHISUBRAMANI, B., and VASSILICOS, J. Particle image velocimetry study of fractal-generated turbulence. Journal of Fluid Mechanics, 711, 306-336(2012) [13] VALENTE, P. and VASSILICOS, J. Universal dissipation scaling for nonequilibrium turbulence. Physical Review Letters, 108, 214503(2012) [14] NEDIC, J., VASSILICOS, J., and GANAPATHISUBRAMANI, B. Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Physical Review Letters, 111, 144503(2013) [15] DAIRAY, T., OBLIGADO, M., and VASSILICOS, J. Non-equilibrium scaling laws in axisymmetric turbulent wakes. Journal of Fluid Mechanics, 781, 166-195(2015) [16] OBLIGADO, M., DAIRAY, T., and VASSILICOS, J. Nonequilibrium scalings of turbulent wakes. Physical Review Fluids, 1, 044409(2016) [17] VALENTE, P., ONISHI, R., and DA SILVA, C. Origin of the imbalance between energy cascade and dissipation in turbulence. Physical Review E, 90, 023003(2014) [18] GOTO, S. and VASSILICOS, J. Energy dissipation and flux laws for unsteady turbulence. Physics Letters A, 379, 1144-1148(2015) [19] LIU, F., LU, L., and FANG, L. Non-equilibrium turbulent phenomena in transitional channel flows. Journal of Turbulence, 19, 731-753(2018) [20] ISAZA, J., SALAZAR, R., and WARHAFT, Z. On grid-generated turbulence in the near-and far-field regions. Journal of Fluid Mechanics, 753, 402-426(2014) [21] AYYALASOMAYAJULA, S. and WARHAFT, Z. Nonlinear interactions in strained axisymmetric high-Reynolds-number turbulence. Journal of Fluid Mechanics, 566, 273-307(2006) [22] HEARST, R. and LAVOIE, P. Velocity derivative skewness in fractal-generated, non-equilibrium grid turbulence. Physics of Fluids, 27, 071701(2015) [23] FANG, L., ZHU, Y., LIU, Y., and LU, L. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Physics Letters A, 379, 2331-2336(2015) [24] FANG, L., ZHAO, H. K., LU, L. P., LIU, Y. W., and YAN, H. Quantitative description of nonequilibrium turbulent phenomena in compressors. Aerospace Science and Technology, 71, 78-89(2017) [25] FANG, L., BOS, W., and JIN, G. Short-time evolution of Lagrangian velocity gradient correlations in isotropic turbulence. Physics of Fluids, 27, 125102(2015) [26] CHOI, H., MOIN, P., and KIM, J. Direct numerical simulation of turbulent flow over riblets. Journal of Fluid Mechanics, 255, 503-539(1993) [27] DENG, B. and XU, C. Influence of active control on STG-based generation of streamwise vortices in near-wall turbulence. Journal of Fluid Mechanics, 710, 234-259(2012) [28] DENG, B., XU, C., HUANG, W., and CUI, G. Strengthened opposition control for skin-friction reduction in wall-bounded turbulent flows. Journal of Turbulence, 15, 122-143(2014) [29] GE, M., XU, C., and CUI, G. Active control of turbulence for drag reduction based on the detection of near-wall streamwise vortices by wall information. Acta Mechanica Sinica, 31, 512-522(2015) [30] DENG, B., HUANG, W., and XU, C. Origin of effectiveness degradation in active drag reduction control of turbulent channel flow at Reλ=1000. Journal of Turbulence, 17, 758-786(2016) [31] MOSER, R., KIM, J., and MANSOUR, N. Direct numerical simulation of turbulent channel flow up to Reτ=590. Physics of Fluids, 11, 943-945(1999) [32] ALAMO, J. D. and JIMENEZ, J. Spectra of the very large anisotropic scales in turbulent channels. Physics of Fluids, 15, L41-L44(2003) [33] GE, M., ZUO, Y., DENG, Y., and LI, Y. Spatial relation between fluctuating wall pressure and near-wall streamwise vortices in wall bounded turbulent flow. Applied Mathematics and Mechanics (English Edition), 36(6), 719-728(2015) https://doi.org/10.1007/s10483-015-1945-6 [34] GE, M., TIAN, D., and LIU, Y. Dynamic evolution process of turbulent channel flow after opposition control. Fluid Dynamics Research, 49, 015505(2017) [35] FANG, J., YAO, Y., LI, Z., and LU, L. Investigation of low-dissipation monotonicity-preserving scheme for direct numerical simulation of compressible turbulent flows. Computers and Fluids, 104, 55-72(2014) [36] FANG, J., YAO, Y., ZHELTOVODOV, A. A., LI, Z., and LU, L. Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Physics of Fluids, 27, 125104(2015) [37] FANG, J., YAO, Y., ZHELTOVODOV, A. A., and LU, L. Investigation of three-dimensional shock wave/turbulent-boundary-layer interaction initiated by a single fin. AIAA Journal, 55, 509-523(2016) [38] LELE, S. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103, 16-42(1992) [39] GAITONDE, D. V. and VISBAL, M. R. Pade-type higher-order boundary filters for the NavierStokes equations. AIAA Journal, 38, 2103-2112(2000) [40] GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation of the American Mathematical Society, 67, 73-85(1998) [41] LARDEAU, S. and LESCHZINER, M. The interaction of round synthetic jets with a turbulent boundary layer separating from a rounded ramp. Journal of Fluid Mechanics, 683, 172-211(2011) [42] BENTALEB, Y., LARDEAU, S., and LESCHZINER, M. A. Large-eddy simulation of turbulent boundary layer separation from a rounded step. Journal of Turbulence, 13, 1-4(2012) [43] TOUBER, E. and SANDHAM, N. D. Large-eddy simulation of low-frequency unsteadiness in a turbulent shock-induced separation bubble. Theoretical and Computational Fluid Dynamics, 23, 79-107(2009) [44] KIM, J. W. and LEE, D. J. Generalized characteristic boundary conditions for computational aeroacoustics. AIAA Journal, 38, 2040-2049(2000) [45] KIM, J. W. and LEE, D. J. Generalized characteristic boundary conditions for computational aeroacoustics, part 2. AIAA Journal, 42, 47-55(2004) [46] YANG, Z. and WANG, B. C. Capturing Taylor-Görtler vortices in a streamwise-rotating channel at very high rotation numbers. Journal of Fluid Mechanics, 838, 658-689(2018) [47] YANG, Z., CUI, G., ZHANG, Z., and XU, C. A modified nonlinear sub-grid scale model for large eddy simulation with application to rotating turbulent channel flows. Physics of Fluids, 24, 075113(2012) [48] YANG, Z., CUI, G., and ZHANG, Z. Large eddy simulation of rotating turbulent channel flow with a new dynamic global-coefficient nonlinear subgrid stress model. Journal of Turbulence, 13, N48(2012) [49] AVSARKISOV, V., HOYAS, S., OBERLACK, M., and GARCIA-GALLACHE, J. Turbulent plane Couette flow at moderately high Reynolds number. Journal of Fluid Mechanics, 751, R1(2014) [50] YANG, Z., DENG, B., WANG, B., and SHEN, L. Letter:the effects of streamwise system rotation on pressure fluctuations in a turbulent channel flow. Physics of Fluids, 30, 091701(2018) [51] GANDIA-BARBERA, S., HOYAS, S., OBERLACK, M., and KRAHEBERGER, S. Letter:the link between the Reynolds shear stress and the large structures of turbulent Couette-Poiseuille flow. Physics of Fluids, 30, 041702(2018) [52] YANG, Z., DENG, B. Q., and SHEN, L. Direct numerical simulation of wind turbulence over breaking waves. Journal of Fluid Mechanics, 850, 120-155(2018) [53] YANG, Z. and WANG, B. C. On the topology of the eigenframe of the subgrid-scale stress tensor. Journal of Fluid Mechanics, 798, 598-627(2016) [54] SCHLATTER, P. and ORLU, R. Assessment of direct numerical simulation data of turbulent boundary layers. Journal of Fluid Mechanics, 659, 116-126(2010) [55] JIMENEZ-SENDIN, J., HOYAS, S., SIMENS, M. P., and MIZUNO, Y. Turbulent boundary layers and channels at moderate Reynolds numbers. Journal of Fluid Mechanics, 657, 335-360(2010) [56] VASSILICOS, J. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 47, 95-114(2015) |