[1] KOLMOGOROV, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings:Mathematical and Physical Sciences, 434, 9-13(1991) [2] RICHARDSON, L. F. Weather Prediction by Numerical Process, Cambridge University Press, Cambridge (2007) [3] FANG, L., ZHAO, H. K., LU, L. P., LIU, Y. W., and YAN, H. Quantitative description of non-equilibrium turbulent phenomena in compressors. Aerospace Science and Technology, 71, 78-89(2017) [4] YAN, H., LIU, Y. W., LI, Q. S., and LU, L. P. Turbulence characteristics in corner separation in a highly loaded linear compressor cascade. Aerospace Science and Technology, 75, 139-154(2018) [5] VASSILICOS, J. C. Dissipation in turbulent flows. Annual Review of Fluid Mechanics, 47, 95-114(2015) [6] BOS, W. J. T. and RUBINSTEIN, R. Dissipation in unsteady turbulence. Physics Review Fluids, 2, 022601(2017) [7] LIU, F., LU, L. P., BOS, W. J. T., and FANG, L. Assessing the non-equilibrium of decaying turbulence with reversed initial fields. Physical Review Fluids, 4, 084603(2019) [8] HEARST, R. J. and LAVOIE, P. Velocity derivative skewness in fractal-generated, non-equilibrium grid turbulence. Physics of Fluids, 27, 071701(2015) [9] ISAZA, J. C., SALAZAR, R., and WARHAFT, Z. On grid-generated turbulence in the near and far field regions. Journal of Fluid Mechanics, 753, 402-426(2014) [10] FANG, L., ZHU, Y., LIU, Y. W., and LU, L. P. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Physics Letters A, 379, 2331-2336(2015) [11] VALENTE, P. C., ONISHI, R., and SILVA, C. B. D. Origin of the imbalance between energy cascade and dissipation in turbulence. Physical Review E, 90, 023003(2014) [12] GOTO, S. and VASSILICOS, J. C. Energy dissipation and flux laws for unsteady turbulence. Physics Letters A, 379, 1144-1148(2015) [13] SEOUD, R. E. and VASSILICOS, J. C. Dissipation and decay of fractal-generated turbulence. Physics of Fluids, 19, 105108(2007) [14] VALENTE, P. C. and VASSILICOS, J. C. Universal dissipation scaling for nonequilibrium turbulence. Physical Review Letters, 108, 214503(2012) [15] GOMES-FERNANDES, R., GANAPATHISUBRAMANI, B., and VASSILICOS, J. C. Particle image velocimetry study of fractal-generated turbulence. Journal of Fluid Mechanics, 711, 306-336(2012) [16] NEDÍC, J., VASSILICOS, J. C., and GANAPATHISUBRAMANI, B. Axisymmetric turbulent wakes with new nonequilibrium similarity scalings. Physical Review Letters, 111, 144503(2013) [17] DAIRAY, T., OBLIGADO, M., and VASSILICOS, J. C. Non-equilibrium scaling laws in axisymmetric turbulent wakes. Journal of Fluid Mechanics, 781, 166-195(2015) [18] LAYEK, G. C. and SUNITA. Non-Kolmogorov scaling and dissipation laws in planar turbulent plume. Physics of Fluids, 30, 115105(2018) [19] LAYEK, G. C. and SUNITA. Non-Kolmogorov dissipation in a turbulent planar jet. Physical Review Fluids, 3, 124605(2018) [20] LESIEUR, M. Turbulence in Fluids, Kluwer Academic, Dordrecht (1997) [21] LIU, F., LU, L. P., and FANG, L. Non-equilibrium turbulent phenomena in transitional channel flows. Journal of Turbulence, 19, 731-753(2018) [22] KAMRUZZAMAN, M., DJENIDI, L., and ANTONIA, R. A. Behaviour of the energy dissipation coefficient in a rough wall turbulent boundary layer. Experiments in Fluids, 59, 9(2018) [23] NEDIC, J., TAVOULARIS, S., and MARUSIC, I. Dissipation scaling in constant-pressure turbulent boundary layers. Physical Review Fluids, 2, 032601(2017) [24] FANG, J., YAO, Y. F., LI, Z. R., and LU, L. P. Investigation of low-dissipation monotonicity-preserving scheme for direct numerical simulation of compressible turbulent flows. Computers and Fluids, 104, 55-72(2014) [25] FANG, J., YAO, Y. F., ZHELTOVODOV, A. A., LI, Z. R., and LU, L. P. Direct numerical simulation of supersonic turbulent flows around a tandem expansion compression corner. Physics of Fluids, 27, 125104(2015) [26] FANG, J., YAO, Y. F., ZHELTOVODOV, A. A., and LU, L. P. Investigation of three dimensional shock wave/turbulent boundary layer interaction initiated by a single-fin. AIAA Journal, 55, 509-523(2016) [27] KELE, S. K. Compact finite difference schemes with spectral-like resolution. Journal of Computational Physics, 103, 16-42(1992) [28] FANG, J., GAO, F., MOULINEC, C., and EMERSON, D. R. An improved parallel compact scheme for domain-decoupled simulation of turbulence. International Journal for Numerical Methods in Fluids, 90, 479-500(2019) [29] GAITONDE, D. V. and VISBAL, M. R. Pade-type higher-order boundary filters for the Navier-Stokes equations. AIAA Journal, 38, 2103-2112(2000) [30] GOTTLIEB, S. and SHU, C. W. Total variation diminishing Runge-Kutta schemes. Mathematics of Computation, 67, 73-85(1998) [31] KIM, W. and LEE, D. J. Generalized characteristic boundary conditions for computational aeroacoustics. AIAA Journal, 38, 2040-2049(2000) [32] FASEL, H. and KONZELMANN, U. Non-parallel stability of a flat-plate boundary layer using the complete Navier-Stokes equations. Journal of Fluid Mechanics, 221, 311-347(1990) [33] SAYADI, T., HAMMAN, C., and MOIN, P. Direct numerical simulation of complete H-type and K-type transitions with implications for the dynamics of turbulent boundary layers. Journal of Fluid Mechanics, 724, 480-509(2013) [34] SMITS, A. J., MATHESON, N., and JOUBERT, P. N. Low-Reynolds-number turbulent boundary layers in zero and favorable pressure gradients. Journal of Ship Research, 27, 147-157(1983) [35] ZHANG, X. X., WATANABE, T., and NAGATA, K. Turbulent/nonturbulent interfaces in high-resolution direct numerical simulation of temporally evolving compressible turbulent boundary layers. Physical Review Fluids, 3, 094605(2018) [36] SPALART, P. R. Direct simulation of a turbulent boundary layer up to Rθ=1410. Journal of Fluid Mechanics, 187, 61-98(1988) [37] WU, X. H. and MOIN, P. Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. Journal of Fluid Mechanics, 630, 5-41(2009) [38] DUCROS, F., COMTE, P., and LESIEUR, M. Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate. Journal of Fluid Mechanics, 326, 1-36(1996) [39] HINZE, J. O. Turbulence, 2nd ed., McGraw-Hill, New York (1975) [40] WEI, T., FIFE, P., KLEWICKI, J., and MCMURTRY, P. Properties of the mean momentum balance in turbulent boundary layer, pipe and channel flows. Journal of Fluid Mechanics, 522, 303-327(2005) [41] PINTON, J. F., HOLDSWORTH, P. C. W., and LABBÉ, R. Power fluctuations in a closed turbulent shear flow. Physical Review E, 60, R2452-R2455(1999) [42] LAUNDER, B. E. and SPALDING, D. B. Lecture in Mathematical Models of Turbulence, Academic Press, London (1972) [43] POPE, S. Turbulent Flows, Cambridge University Press, Cambridge (2000) |