[1] KOLMOGOROV, A. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings:Mathematical and Physical Sciences, 30, 301-305(1941) [2] LUMLEY, J. L. Some comments on turbulence. Physics of Fluids A:Fluid Dynamics, 4, 203-211(1992) [3] ALEXAKIS, A. and BIFERALE, L. Cascades and transitions in turbulent flows. Physics Reports, 767-769, 1-101(2018) [4] NASTROM, G. D., GAGE, K. S., and JASPERSON, W. H. Kinetic energy spectrum of large- and mesoscale atmospheric processes. nature, 310, 36-38(1984) [5] CELANI, A., MUSACCHIO, S., and VINCENZI, D. Turbulence in more than two and less than three dimensions. Physical Review Letters, 104, 184506(2010) [6] JACOBITZ, F. G., SCHNEIDER, K., BOS, W. J. T., and FARGE, M. On the structure and dynamics of sheared and rotating turbulence:anisotropy properties and geometrical scale-dependent statistics. Physics of Fluids, 22, 085101(2010) [7] YAROM, E., VARDI, Y., and SHARON, E. Experimental quantification of inverse energy cascade in deep rotating turbulence. Physics of Fluids, 25, 085105(2013) [8] CAMPAGNE, A., GALLET, B., MOISY, F., and CORTET, P. P. Direct and inverse energy cascades in a forced rotating turbulence experiment. Physics of Fluids, 26, 125112(2014) [9] LIU, Y. W., LU, L. P., FANG, L., and GAO, F. Modification of Spalart-Allmaras model with consideration of turbulence energy backscatter using velocity helicity. Physics Letters A, 375, 2377-2381(2011) [10] YAN, H., LIU, Y. W., LI, Q. S., and LU, L. P. Turbulence characteristics in corner separation in a highly loaded linear compressor cascade. Aerospace Science and Technology, 75, 139-154(2018) [11] BIFERALE, L., MUSACCHIO, S., and TOSCHI, F. Inverse energy cascade in three-dimensional isotropic turbulence. Physical Review Letters, 108, 164501(2012) [12] STOMKA, J. and DUNKEL, J. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids. Proceedings of the National Academy of Sciences, 114, 2119-2124(2017) [13] SAHOO, G., ALEXAKIS, A., and BIFERALE, L. Discontinuous transition from direct to inverse cascade in three-dimensional turbulence. Physical Review Letters, 118, 164501(2017) [14] HEARST, R. J. and LAVOIE, P. Velocity derivative skewness in fractal-generated, nonequilibrium grid turbulence. Physics of Fluids, 27, 071701(2015) [15] ISAZA, J. C., SALAZAR, R., and WARHAFT, Z. On grid-generated turbulence in the near- and far field regions. Journal of Fluid Mechanics, 753, 402-426(2014) [16] FANG, L., ZHU, Y., LIU, Y. W., and LU, L. P. Spectral non-equilibrium property in homogeneous isotropic turbulence and its implication in subgrid-scale modeling. Physics Letters A, 379, 2331-2336(2015) [17] LIU, F. and LIU, Y. W. Velocity derivative skewness and its budget in non-equilibrium timereversed turbulence. AIP Advances, 9, 035207(2019) [18] LIU, F., FANG, L., and SHAO, L. The role of velocity derivative skewness in understanding non-equilibrium turbulence. Chinese Physics B, 29, 119-125(2020) [19] BOS, W. J. T., CHEVILLARD, L., SCOTT, J., and RUBINSTEIN, R. Reynolds number effects on the velocity increment skewness in isotropic turbulence. Physics of Fluids, 24, 015108(2012) [20] QIAN, J. Skewness factor of turbulent velocity derivative. Acta Mechanica Sinica, 10, 12-15(1994) [21] LESIEUR, M. Turbulence in Fluids, Kluwer Academic, Dordrecht (1997) [22] DAVIDSON, P. A. Turbulence:An Introduction for Scientists and Engineers, Oxford University Press, Oxford University (2004) [23] LIU, F., LU, L. P., BOS, W. J. T., and FANG, L. Assessing the non-equilibrium of decaying turbulence with reversed initial fields. Physical Review Fluids, 4, 084603(2019) [24] LIU, F., LU, L. P., and FANG, L. Non-equilibrium turbulent phenomena in transitional channel flows. Journal of Turbulence, 19, 731-753(2018) [25] LIU, F., FANG, L., and FANG, J. Non-equilibrium turbulent phenomena in transitional flat plate boundary-layer flows. Applied Mathematics and Mechanics (English Edition), 42(4), 567-582(2021) https://doi.org/10.1007/s10483-021-2728-9 [26] FANG, L., ZHAO, H. K., LU, L. P., LIU, Y. W., and YAN, H. Quantitative description of nonequilibrium turbulent phenomena in compressors. Aerospace Science and Technology, 71, 78-89(2017) [27] AYYALASOMAYAJULA, S. and WARHAFT, Z. Nonlinear interactions in strained axisymmetric high-Reynolds-number turbulence. Journal of Fluid Mechanics, 566, 273-307(2006) [28] BETCHOV, R. An inequality concerning the production of vorticity in isotropic turbulence. Journal of Fluid Mechanics, 1, 497-504(1956) [29] TOWNSEND, A. A. On the fine-scale structure of turbulence. Proceedings of the Royal Society of London, 208, 534-542(1951) [30] HINZE, J. O. Turbulence, 2nd edition, McGraw-Hill, New York (1975) [31] WYNGAARD, J. C. Turbulence in the Atmosphere, Cambridge University Press, Cambridge (2010) [32] SILVA, C. B. D. and PEREIRA, J. C. F. Invariants of the velocity-gradient, rate-of-strain, and rate-of-rotation tensors across the turbulent/nonturbulent interface in jets. Physics of Fluids, 20, 055101(2008) [33] FANG, L., BOS, W. J. T., SHAO, L., and BERTOGLIO, J. P. Time reversibility of Navier-Stokes turbulence and its implication for subgrid scale models. Journal of Turbulence, 13, 1-14(2012) [34] FANG, L., ZHANG, Y. J., FANG, J., and ZHU, Y. Relation of the fourth-order statistical invariants of velocity gradient tensor in isotropic turbulence. Physical Review E, 94, 023114(2016) [35] PINTON, J. F., HOLDSWORTH, P. C. W., and LABBÉ, R. Power fluctuations in a closed turbulent shear flow. Physical Review E, 60, R2452-R2455(1999) [36] GOTO, S. and VASSILICOS, J. C. Energy dissipation and flux laws for unsteady turbulence. Physics Letters A, 379, 1144-1148(2015) [37] ASHURST, W. T., KERSTEIN, A. R., KERR, R. M., and GIBSON, C. H. Alignment of vorticity and scalar gradient with strain rate in simulated Navier-Stokes turbulence. Physics of Fluids, 30, 2343-2353(1987) [38] ZHOU, Y., NAGATA, K., SAKAI, Y., ITO, Y., and HAYASE, T. Enstrophy production and dissipation in developing grid-generated turbulence. Physics of Fluids, 28, 025113(2016) [39] HARTEL, C., KLEISER, L., UNGER, F., and FRIEDRICH, R. Subgridscale energy transfer in the nearwall region of turbulent flows. Physics of Fluids, 6, 3130-3143(1994) [40] MENEVEAU, C. Lagrangian dynamics and models of the velocity gradient tensor in turbulent flows. Annual Review of Fluid Mechanics, 43, 219-245(2011) [41] VINCENT, A. and MENEGUZZI, M. The spatial structure and statistical properties of homogeneous turbulence. Journal of Fluid Mechanics, 225, 1-20(1991) [42] VINCENT, A. and MENEGUZZI, M. The dynamics of vorticity tubes in homogeneous turbulence. Journal of Fluid Mechanics, 258, 245-254(1994) [43] SAGAUT, P. Large Eddy Simulation for Incompressible Flows, Springer Publishing, Switzerland (2006) [44] FANG, L., SHAO, L., and BERTOGLIO, J. P. Recent understanding on the subgrid-scale modeling of large-eddy simulation in physical space. Science China Physics, Mechanics & Astronomy, 57, 2188-2193(2014) [45] ROGALLO, R. S. and MOIN, P. Numerical simulation of turbulent flows. Annual Review of Fluid Mechanics, 16, 99-137(1984) [46] SPALART, P. R. Detached-eddy simulation. Annual Review of Fluid Mechanics, 41, 181-202(2009) |