[1] CRANE, L. J. Flow past a stretching plate. Zeitschrift für Angewandte Mathematik und Physik, 21, 645-647(1970)
[2] ABBASBANDY, S., HAYAT, T., ALSAEDI, A., and RASHIDI, M. M. Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid. International Journal of Numerical Methods for Heat and Fluid Flow, 24, 390-401(2014)
[3] LIN, Y., ZHENG, L., and CHEN, G. Unsteady flow and heat transfer of pseudoplastic nanoliquid in a finite thin film on a stretching surface with variable thermal conductivity and viscous dissipation. Powder Technology, 274, 324-332(2015)
[4] HAYAT, T., IMTIAZ, M., and ALSAEDI, A. Partial slip effects in flow over nonlinear stretching surface. Applied Mathematics and Mechanics (English Edition), 36(11), 1513-1526(2015) https://doi.org/10.1007/s10483-015-1999-7
[5] SAJID, M., ALI, N., JAVED, J., and ABBAS, Z. Stretching a curved surface in a viscous fluid. Chinese Physics Letters, 27, 024703(2010)
[6] NAVEED, M., ABBAS, Z., and SAJID, M. Hydromagnetic flow over an unsteady curved stretching surface. Engineering Science and Technology:an International Journal, 19, 841-845(2016)
[7] SAJID, M., ALI, N., ABBAS, Z., and JAVED, T. Flow of micropolar fluid over a curved stretching surface. Journal of Engineering Physics and Thermophysics, 4, 798-804(2011)
[8] ROSCA, N. C. and POP, I. Unsteady boundary layer flow over a permeable curved stretching/shrinking surface. European Journal of Mechanics-B/Fluids, 51, 61-67(2015)
[9] NAVEED, M., ABBAS, Z., and SAJID, M. MHD flow of micropolar fluid due to a curved stretching sheet with thermal radiation. Journal of Applied Fluid Mechanics, 9, 131-138(2016)
[10] ABBAS, Z., NAVEED, M., and SAJID, M. Hydromagnetic slip flow of nanofluid over a curved stretching surface with heat generation and thermal radiation. Journal of Molecular Liquids, 215, 756-762(2016)
[11] OKECHI, N. F., JALIL, M., and ASGHAR, S. Flow of viscous fluid along an exponentially stretching curved surface. Results in Physics, 7, 2851-2854(2017)
[12] HAYAT, T., QAYYUM, S., IMTIAZ, M., and ALSAEDI, A. Double stratification in flow by curved stretching sheet with thermal radiation and Joule heating. Journal of Thermal Science and Engineering Applications, 10, 021010(2017)
[13] OKECHI, N. F., JALIL, M., and ASGHAR, S. Flow of viscous fluid along an exponentially stretching curved surface. Results in Physics, 7, 2851-2854(2017)
[14] SANNI, K. M., ASGHAR, S., JALIL, N., OKECHI, N. F. Flow of viscous fluid along a nonlinearly stretching curved surface. Results in Physics, 7, 1-4(2017)
[15] GANAPATHI, M. and POLIT, O. A nonlocal higher-order model including thickness stretching effect for bending and buckling of curved nanobeams. Applied Mathematical Modelling, 57, 121-141(2018)
[16] SHAHZAD, S. A., HAYAT, T., ALSAEDI, A., and OBID, M. A. Nonlinear thermal radiation in three-dimensional flow of Jeffrey nanofluid:a model for solar energy. Applied Mathematics and Computation, 248, 273-286(2014)
[17] GAO, C. and JIAN, Y. Analytical solution of magnetohydrodynamic flow of Jeffrey fluid through a circular microchannel. Journal of Molecular Liquids, 211, 803-811(2015)
[18] REDDY, G. B., SREENADH, S., REDDY, R. H., and KAVITHA, A. Flow of a Jeffrey fluid between torsionally oscillating disks. Ain Shams Engineering Journal, 6, 355-362(2015)
[19] TURKYILMAZOGLU, M. and POP, I. Exact analytical solutions for the flow and heat transfer near the stagnation point on a stretching/shrinking sheet in a Jeffrey fluid. International Journal of Heat and Mass Transfer, 57, 82-88(2013)
[20] HAYAT, T., IMTIAZ, M., and ALSAEDI, A. Magnetohydrodynamic stagnation point flow of a Jeffrey nanofluid with Newtonian heating. Journal of Aerospace Engineering, 29, 04015063(2016)
[21] FAROOQ, M., GULL, N., ALSAEDI, A., and HAYAT, T. MHD flow of a Jeffrey fluid with Newtonian heating. Journal of Mechanics, 31, 319-329(2015)
[22] HAYAT, T., QAYYUM, S., IMTIAZ, M., and ALSAEDI, A. Three-dimensional rotating flow of Jeffrey fluid for Cattaneo-Christov heat flux model. AIP Advances, 6, 025012(2016)
[23] YANG, X., QI, H. T., and JIANG, X. Y. Numerical analysis for electroosmotic flow of fractional Maxwell fluids. Applied Mathematics Letters, 78, 1-8(2018)
[24] KUMAR, M. S., SANDEEP, N., KUMAR, B. R., and SALEEM, S. A comparative study of chemically reacting 2D flow of Casson and Maxwell fluids. Alexandria Engineering Journal (2017) https://doi.org/10.1016/j.aej.2017.05.010
[25] FOURIER, J. B. J. Théorie analytique de la chaleur. Journal für die Reine und Angewandte Mathematik, 7, 116-131(1903)
[26] CATTANEO, C. Sulla conduzione del calore. Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, 3, 83-101(1948)
[27] CHRISTOV, C. I. On frame indifferent formulation of the Maxwell-Cattaneo model of finite speed heat conduction. Mechanics Research Communications, 36, 481-486(2009)
[28] TIBULLO, V. and ZAMPOLI, V. A uniqueness result for the Cattaneo-Christov heat conduction model applied to incompressible fluids. Mechanics Research Communications, 38, 77-79(2011)
[29] STRAUGHAN, B. Thermal convection with the Cattaneo-Christov model. International Journal of Heat and Mass Transfer, 53, 95-98(2010)
[30] CIARLETTA, M. and STRAUGHAN, B. Uniqueness and structural stability for the CattaneoChristov equations. Mechanics Research Communications, 37, 445-447(2010)
[31] MUSTAFA, M. Cattaneo-Christov heat flux model for rotating flow and heat transfer of upperconvected Maxwell fluid. AIP Advances, 5, 047109(2015)
[32] HAYAT, T., QAYYUM, S., IMTIAZ, M., and ALSAEDI, A. Impact of Cattaneo-Christov heat flux in Jeffrey fluid flow with homogeneous-heterogeneous reactions. PLoS One, 11, e0148662(2016)
[33] HAN, S. H., ZHENG, L. C., LI, C. R., and ZHANG, X. X. Coupled flow and heat transfer in viscoelastic fluid with Cattaneo-Christov heat flux model. Applied Mathematics Letters, 38, 87-93(2014)
[34] HAYAT, T., IMTIAZ, M., ALSAEDI, A., and ALMEZAL, S. On Cattaneo-Christov heat flux in MHD flow of Oldroyd-B fluid with homogeneous-heterogeneous reactions. Journal of Magnetism and Magnetic Materials, 104, 296-303(2016)
[35] HAYAT, T., KHAN, M. I., WAQAS, M., and ALSAEDI, A. On Cattaneo-Christov heat flux in the flow of variable thermal conductivity Eyring-Powell fluid. Results in Physics, 7, 446-450(2017)
[36] HAYAT, T., KHAN, M. I., FAROOQ, M., YASMEEN, T., and ALSAEDI, A. Stagnation point flow with Cattaneo-Christov heat flux and homogeneous-heterogeneous reactions. Journal of Molecular Liquids, 220, 49-55(2016)
[37] FAROOQ, U., HAYAT, T., ALSAEDI, A., and LIAO, S. J. Series solutions of non-similarity boundary layer flows of nano-fluids over stretching surfaces. Numerical Algorithms, 70, 43-59(2015)
[38] SUI, J., ZHENG, L., ZHANG, X., and CHEN, G. Mixed convection heat transfer in power law fluids over a moving conveyor along an inclined plate. International Journal of Heat and Mass Transfer, 85, 1023-1033(2015)
[39] HAYAT, T., IMTIAZ, M., and ALSAEDI, A. Impact of magnetohydrodynamics in bidirectional flow of nanofluid subject to second order slip velocity and homogeneous-heterogeneous reactions. Journal of Magnetism and Magnetic Materials, 395, 294-302(2015)
[40] SHEHZAD, S. A., HAYAT, T., ALSAEDI, A., and MERAJ, M. A. Cattaneo-Christov heat and mass flux model for 3D hydrodynamic flow of chemically reactive Maxwell liquid. Applied Mathematics and Mechanics (English Edition), 38(10), 1347-1356(2017) https://doi.org/10.1007/s10483-017-2250-6 |