[1] ZHANG, S. Q., LI, A. J., ZHENG, Y. Q., and ZHANG, D. S. Mechanical analysis of C/C composite grids in ion optical system. Applied Mathematics and Mechanics (English Edition), 40(11), 1589-1600(2019) https://doi.org/10.1007/s10483-019-2527-9 [2] ZHANG, S. Q., ZHANG, Y. C., CHEN, M., WANG, Y. J., CUI, Q., WU, R., AROLA, D., and ZHANG, D. S. Characterization of the mechanical properties of aluminum cast alloy at elevated temperature. Applied Mathematics and Mechanics (English Edition), 39(7), 967-980 (2018) https://doi.org/10.1007/s10483-018-2349-8 [3] RAMESH, K. and RAMAKRISHNAN, V. Digital photoelasticity of glass: a comprehensive review. Optics and Lasers in Engineering, 87, 59-74(2016) [4] SU, F., LAN, T. B., and PAN, X. X. Stress evaluation of through-silicon vias using micro-infrared photoelasticity and finite element analysis. Optics and Lasers in Engineering, 74, 87-93(2015) [5] ZHOU, H. M., SUN, Q., XI, G. D., and LI, D. Q. Numerical prediction of process-induced residual stresses in glass bulb panel. Applied Mathematics and Mechanics (English Edition), 27(9), 1197- 1206(2006) https://doi.org/10.1007/s10483-006-0906-z [6] PARK, K. H., BAEK, S. H., and JUNG, Y. H. Investigation of arch structure of granular assembly in the trapdoor test using digital RGB photoelastic analysis. Powder Technology, 366, 560-570 (2020) [7] RAMESH, K. and SASIKUMAR, S. Digital photoelasticity: recent developments and diverse applications. Optics and Lasers in Engineering, 135, 106186(2020) [8] ZHANG, D. S., HAN, Y. S., ZHANG, B., and AROLA, D. Automatic determination of parameters in photoelasticity. Optics and Lasers in Engineering, 45, 860-867(2007) [9] ASHOKAN, K. and RAMESH, K. An adaptive scanning scheme for efiective whole field stress separation in digital photoelasticity. Optics and Laser Technology, 41, 25-31(2009) [10] GUO, E. H., LIU, Y. G., HAN, Y. S., AROLA, D., and ZHANG, D. S. Full-field stress determination in photoelasticity with phase shifting technique. Measurement Science and Technology, 29, 045208(2018) [11] RAMJI, M. and RAMESH, K. Whole field evaluation of stress components in digital photoelasticity: issues, implementation and application. Optics and Lasers in Engineering, 46, 257-271(2008) [12] GINGOLD, R. and MONAGHAN, J. Smoothed particle hydrodynamics: theory and application to non-spherical stars. Monthly Notices of the Royal Astronomical Society, 181, 375-389(1977) [13] ANG, W. T. and WANG, X. A numerical method based on boundary integral equations and radial basis functions for plane anisotropic thermoelastostatic equations with general variable coe–cients. Applied Mathematics and Mechanics (English Edition), 41(4), 551-566(2020) https://doi.org/10.1007/s10483-020-2592-8 [14] CAI, L. Q., WANG, X. D., WEI, J. J., YAO, M., and LIU, Y. Element-free Galerkin method modeling of thermo-elastic-plastic behavior for continuous casting round billet. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science, 52, 804-814(2021) [15] LIU, D. and CHENG, Y. M. The interpolating element-free Galerkin method for three-dimensional transient heat conduction problems. Results in Physics, 19, 103477(2020) [16] WANG, Z. Q., LI, S. C., PING, Y., JIANG, J., and MA, T. F. A highly accurate regular domain collocation method for solving potential problems in the irregular doubly connected domains. Mathematical Problems in Engineering, 2014, 397327(2014) [17] WANG, L. H., QIAN, Z. H., ZHOU, Y. T., and PENG, Y. B. A weighted meshfree collocation method for incompressible flows using radial basis functions. Journal of Computational Physics, 401, 108964(2020) [18] YANG, J. P. and SU, W. T. Strong-form framework for solving boundary value problems with geometric nonlinearity. Applied Mathematics and Mechanics (English Edition), 37(12), 1707-1720 (2016) https://doi.org/10.1007/s10483-016-2149-8 [19] SAMUEL, F. M. and MOTSA, S. S. A highly accurate trivariate spectral collocation method of solution for two-dimensional nonlinear initial-boundary value problems. Applied Mathematics and Computation, 360, 221-235(2019) [20] BERRUT, J. P. and KLEIN, G. Recent advances in linear barycentric rational interpolation. Journal of Computational and Applied Mathematics, 259, 95-107(2014) [21] FLOATER, M. S. and HORMANN, K. Barycentric rational interpolation with no poles and high rates of approximation. Numerische Mathematik, 107, 315-331(2007) [22] ZHUANG, M. L., MIAO, C. Q., and JI, S. Y. Plane elasticity problems by barycentric rational interpolation collocation method and a regular domain method. International Journal for Numerical Methods in Engineering, 121, 4134-4156(2020) [23] JIANG, J., WANG, Z. Q., WANG, J. H., and TANG, B. T. Barycentric rational interpolation iteration collocation method for solving nonlinear vibration problems. Journal of Computational and Nonlinear Dynamics, 11, 021001(2016) [24] GHIGLIA, D. and ROMERO, L. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. Journal of the Optical Society of America A-Optics Image Science and Vision, 11, 107-117(1994) |