[1] KAGGWA, A. and CARSON, J. K. Developments and future insights of using nanofluids for heat transfer enhancements in thermal systems: a review of recent literature. International Nano Letters, 9, 277-288(2019) [2] SIDIK, N. A. C., ADAMU, I. M., JAMIL, M. M., KEFAYATI, G. H. R., MAMAT, R., and NAJAFI, G. Recent progress on hybrid nanofluids in heat transfer applications: a comprehensive review. International Communications in Heat and Mass Transfer, 78, 68-79(2016) [3] HUMINIC, G. and HUMINIC, A. Hybrid nanofluids for heat transfer applications— a state-ofthe-art review. International Journal of Heat and Mass Transfer, 125, 82-103(2018) [4] SHAH, T. R. and ALI, H. M. Applications of hybrid nanofluids in solar energy, practical limitations and challenges: a critical review. Solar Energy, 183, 173-203(2019) [5] SURESH, S., VENKITARAJ, K. P., and SELVAKUMAR, P. Synthesis, characterisation of Al2O3- Cu nanocomposite powder and water-based nanofluids. Advanced Materials Research, 328-330, 1560-1567(2011) [6] DEVI, S. S. U. and DEVI, S. P. A. Numerical investigation of three-dimensional hybrid Cu-Al2O3/water nanofluid flow over a stretching sheet with effecting Lorentz force subject to Newtonian heating. Canadian Journal of Physics, 94, 490-496(2016) [7] DEVI, S. S. U. and DEVI, S. P. A. Heat transfer enhancement of Cu-Al2O3/water hybrid nanofluid flow over a stretching sheet. Journal of the Nigerian Mathematical Society, 36, 419-433(2017) [8] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Viscous dissipation and MHD hybrid nanofluid flow towards an exponentially stretching/shrinking surface. Neural Computing and Applications, 33, 11285-11295(2021) [9] JAYADEVAMURTHY, P. G. R., KUMAR RANGASWAMY, N., PRASANNAKUMARA, B. C., and NISAR, K. S. Emphasis on unsteady dynamics of bioconvective hybrid nanofluid flow over an upward-downward moving rotating disk. Numerical Methods for Partial Differential Equations (2020) https://doi.org/10.1002/num.22680 [10] WAINI, I., ISHAK, A., and POP, I. Flow and heat transfer of a hybrid nanofluid past a permeable moving surface. Chinese Journal of Physics, 66, 606-619(2020) [11] KHASHI’IE, N. S., ARIFIN, N. M., POP, I., and NAZAR, R. Dual solutions of bioconvection hybrid nanofluid flow due to gyrotactic microorganisms towards a vertical plate. Chinese Journal of Physics, 72, 461-474(2021) [12] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. MHD mixed convection stagnation point flow of a hybrid nanofluid past a vertical flat plate with convective boundary condition. Chinese Journal of Physics, 66, 630-644(2020) [13] RAMACHANDRAN, N., CHEN, T. S., and ARMALY, B. F. Mixed convection in stagnation flows adjacent to vertical surfaces. Journal of Heat Transfer, 110, 373-377(1988) [14] DEVI, C. D. S., TAKHAR, H. S., and NATH, G. Unsteady mixed convection flow in stagnation region adjacent to a vertical surface. Heat and Mass Transfer, 26, 71-79(1991) [15] SESHADRI, R., SREESHYLAN, N., and NATH, G. Unsteady mixed convection flow in the stagnation region of a heated vertical plate due to impulsive motion. International Journal of Heat and Mass Transfer, 45, 1345-1352(2002) [16] HIEMENZ, K. Die grenzschicht an einem in den gleichförmigen flüssigkeitsstrom eingetauchten geraden Kreiszylinder. Dinglers Polytechnical Journal, 326, 321-324(1911) [17] ECKERT, E. R. G. Die berechnung des warmeubergangas in der laminaren grenzschicht unstromter korper. VDI Forschungsh, 416, 1-24(1942) [18] ROSTAMI, M. N., DINARVAND, S., and POP, I. Dual solutions for mixed convective stagnationpoint flow of an aqueous silica-alumina hybrid nanofluid. Chinese Journal of Physics, 56, 2465- 2478(2018) [19] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady MHD mixed convection flow in hybrid nanofluid at three-dimensional stagnation point. Mathematics, 9, 549(2021) [20] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady EMHD stagnation point flow over a stretching/shrinking sheet in a hybrid Al2O3-Cu/H2O nanofluid. International Communications in Heat and Mass Transfer, 123, 105205(2021) [21] ABBAS, Z. and HAYAT, T. Stagnation slip flow and heat transfer over a nonlinear stretching sheet. Numerical Methods for Partial Differential Equations, 27, 302-314(2011) [22] ZAINAL, N. A., NAZAR, R., NAGANTHRAN, K., and POP, I. Unsteady MHD stagnation point flow-induced stretching/shrinking sheet of hybrid nanofluid by exponentially permeable. Engineering Science and Technology; an International Journal, 24, 1201-1210(2021) [23] ARANI, A. A. A. and ABEROUMAND, H. Stagnation-point flow of Ag-CuO/water hybrid nanofluids over a permeable stretching/shrinking sheet with temporal stability analysis. Powder Technology, 380, 152-163(2021) [24] BHATTACHARYYA, K., MUKHOPADHYAY, S., and LAYEK, G. C. Slip effects on boundary layer stagnation-point flow and heat transfer towards a shrinking sheet. International Journal of Heat and Mass Transfer, 54, 308-313(2011) [25] KAUSAR, M. S., HUSSANAN, A., MAMAT, M., and AHMAD, B. Boundary layer flow through Darcy-Brinkman porous medium in the presence of slip effects and porous dissipation. Symmetry, 11, 659(2019) [26] MARTIN, M. J. and BOYD, I. D. Momentum and heat transfer in a laminar boundary layer with slip flow. Journal of Thermophysics and Heat Transfer, 20, 710-719(2006) [27] CAO, K. and BAKER, J. Slip efiects on mixed convective flow and heat transfer from a vertical plate. International Journal of Heat and Mass Transfer, 52, 3829-3841(2009) [28] JAMALUDIN, A., NAZAR, R., and POP, I. Three-dimensional magnetohydrodynamic mixed convection flow of nanofluids over a nonlinearly permeable stretching/shrinking sheet with velocity and thermal slip. Applied Sciences-Basel, 8, 1128(2018) [29] ANUAR, N. S., BACHOK, N., and POP, I. Numerical computation of dusty hybrid nanofluid flow and heat transfer over a deformable sheet with slip effect. Mathematics, 9, 643(2021) [30] WAINI, I., ISHAK, A., and POP, I. Melting heat transfer of a hybrid nanofluid flow towards a stagnation point region with second-order slip. Proceedings of the Institution of Mechanical Engineers; Part E: Journal of Process Mechanical Engineering, 235, 405-415(2021) [31] BAKAR, S. A., ARIFIN, N. M., KHASHIIE, N. S., and BACHOK, N. Hybrid nanofluid flow over a permeable shrinking sheet embedded in a porous medium with radiation and slip impacts. Mathematics, 9, 878(2021) [32] ABDULLAH, A. A., IBRAHIM, F. S., GAWAD, A. A., and BATYYB, A. Investigation of unsteady mixed convection flow near the stagnation point of a heated vertical plate embedded in a nanofluidsaturated porous medium by self-similar technique. American Journal of Energy Engineering, 3, 42-51(2015) [33] TIWARI, R. K. and DAS, M. K. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer, 50, 2002-2018(2007) [34] GHALAMBAZ, M., ROSCAC, N. C., ROSCA, A. V., and POP, I. Mixed convection and stability analysis of stagnation-point boundary layer flow and heat transfer of hybrid nanofluids over a vertical plate. International Journal of Numerical Methods for Heat & Fluid Flow, 30, 3737-3754 (2020) [35] TAKABI, B. and SALEHI, S. Augmentation of the heat transfer performance of a sinusoidal corrugated enclosure by employing hybrid nanofluid. Advances in Mechanical Engineering, 6, 147059 (2014) [36] OZTOP, H. F. and ABU-NADA, E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids. International Journal of Numerical Methods for Heat & Fluid Flow, 29, 1326-1336(2008) [37] LOK, Y. Y., AMIN, N., CAMPEAN, D., and POP, I. Steady mixed convection flow of a micropolar fluid near the stagnation point on a vertical surface. International Journal of Numerical Methods for Heat & Fluid Flow, 15, 654-670(2005) [38] ISHAK, A., NAZAR, R., BACHOK, N., and POP, I. MHD mixed convection flow near the stagnation point on a vertical permeable surface. Physica A: Statistical Mechanics and its Applications, 389, 40-46(2010) [39] DINARVAND, S. and HOSSEINI, R. Homotopy analysis method for unsteady mixed convective stagnation-point flow of a nanofluid using Tiwari-Das nanofluid model. International Journal of Numerical Methods for Heat & Fluid Flow, 26, 40-62(2016) [40] MAHDY, A. Unsteady mixed convection boundary layer flow and heat transfer of nanofluids due to stretching sheet. Nuclear Engineering and Design, 249, 248-255(2012) [41] MUKHOPADHYAY, S. and ANDERSSON, H. I. Effects of slip and heat transfer analysis of flow over an unsteady stretching surface. Heat and Mass Transfer, 45, 1447-1452(2009) |