[1] POUQUET, A. Turbulence, Statistics and Structures: an Introduction, Springer, Berlin, 163-212 (2007) [2] RAFFEL, M., WILLERT, C., WERELEY, S., and KOMPENHANS, J. Experimental Fluid Mechanics, Springer, Berlin, 259-388(2007) [3] XIAO, H. and CINNELLA, P. Quantification of model uncertainty in RANS simulations: a review. Progress in Aerospace Sciences, 108, 1-31(2019) [4] EVENSEN, G. Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research: Oceans, 99(C5), 10143-10162(1994) [5] LAW, K., STUART, A. M., and ZYGALAKIS, K. C. Data assimilation: a mathematical introduction. arXiv, 150607825(2015) [6] KATO, H., YOSHIZAWA, A., UENO, G., and OBAYASHI, S. A data assimilation methodology for reconstructing turbulent flows around aircraft. Journal of Computational Physics, 283, 559-581(2015) [7] OLIVER, T. A. and MOSER, R. D. Bayesian uncertainty quantification applied to RANS turbulence models. Journal of Physics: Conference Series, 318(4), 042032(2011) [8] ZHANG, X. L., MICHELÉN-STRÖFER, C., and XIAO, H. Regularized ensemble Kalman methods for inverse problems. Journal of Computational Physics, 416, 109517(2020) [9] KATO, H. and OBAYASHI, S. Statistical approach for determining parameters of a turbulence model. Information Fusion; 201215th International Conference, Villach, 2452-2457(2012) [10] MONS, V., CHASSAING, J. C., GOMEZ, T., and SAGAUT, P. Reconstruction of unsteady viscous flows using data assimilation schemes. Journal of Computational Physics, 316, 255-280 (2016) [11] HE, C. G., LIU, Y. Z., and GAN, L. Instantaneous pressure determination from unsteady velocity fields using adjoint-based sequential data assimilation. Physics of Fluids, 32(3), 035101(2020) [12] DENG, Z. W., HE, C. G., WEN, X., and LIU, Y. Z. Recovering turbulent flow field from local quantity measurement: turbulence modeling using ensemble-Kalman-filter-based data assimilation. Journal of Visualization, 21(6), 1043-1063(2018) [13] SPALART, P. and ALLMARAS, S. A one-equation turbulence model for aerodynamic flows. 30th Aerospace Sciences Meeting and Exhibit, Reno, 439(1992) [14] BISHOP, C. H., ETHERTON, B. J., and MAJUMDAR, S. J. Adaptive sampling with the ensemble transform Kalman filter, part I: theoretical aspects. Monthly Weather Review, 129(3), 420-436 (2001) [15] BISHOP, C. H., ETHERTON, B. J., and MAJUMDAR, S. J. Adaptive sampling with the ensemble transform Kalman filter, part II: field program implementation. Monthly Weather Review, 130(5), 1356-1369(2002) [16] SZUNYOGH, I., KOSTELICH, E. J., GYARMATI, G., KALNAY, E., HUNT, B. R., OTT, E., SATTERFIELD, E., and YORKE, J. A local ensemble transform Kalman filter data assimilation system for the NCEP global model. Tellus A: Dynamic Meteorology and Oceanography, 60(1), 113-130(2008) [17] BARATA, J. C. A. and HUSSEIN, M. S. The Moore-Penrose pseudoinverse: a tutorial review of the theory. Brazilian Journal of Physics, 42(1-2), 146-165(2012) [18] ANDERSON, J. D. Fundamentals of aerodynamics. AIAA Journal, 48(12), 2983-2983(2010) [19] SOMERS, D. M. Design and experimental results for the S809 airfoil. O–ce of Scientific& Technical Information Technical Reports, 1-97(1997) [20] GHARALI, K. and JOHNSON, D. A. Numerical modeling of an S809 airfoil under dynamic stall, erosion and high reduced frequencies. Applied Energy, 93, 45-52(2012) [21] YANG, M. and XIAO, Z. Parameter uncertainty quantification for a four-equation transition model using a data assimilation approach. Renewable Energy, 158, 215-226(2020) [22] SINGH, A. P. and DURAISAMY, K. Using field inversion to quantify functional errors in turbulence closures. Physics of Fluids, 28(4), 045110(2016) [23] SINGH, A. P., MEDIDA, S., and DURAISAMY, K. Machine learning-augmented predictive modeling of turbulent separated flows over airfoils. AIAA Journal, 55(7), 1-13(2016) |