[1] CHOU, P. Y. On an extension of Reynolds' method of finding apparent stress and the nature of turbulence. Chinese Journal of Physics, 4, 1-33(1940)
[2] CHOU, P. Y. On velocity correlations and the solutions of the equations of turbulent fluctuation. Quarterly of Applied Mathematics, 3, 38-54(1945)
[3] CHEN, S. Y. and ZHOU, P. Y. The application of quasi-similarity conditions in turbulence modeling theory. Advances in Hydrodynamics, 2(2), 1-14(1987)
[4] ZHOU, P. Y. and CHEN, S. Y. On the theory of turbulence for incompressible fluids. Sadhana, 10(3/4), 403-417(1987)
[5] ZHOU, P. Y., HUANG, Y. N., and MENG, Q. G. The pseudo-similarity theory of the plane turbulent mixing layer. Acta Mechanica Sinica, 22(1), 1-8(1990)
[6] ZHOU, P. Y., LIN, J. Z., and WEI, Z. L. The experimental results of 2-d free shear turbulent flows and the comparison with the theoretical computation. Journal of Hydrodynamics, Ser. B, 3, 1-9(1991)
[7] LIN, J. Z. and HUANG, Y. N. The pseudo-similarity theory of turbulence and its application to a channel flow. Journal of Hydraulic Engineering, 12, 72-77(1994)
[8] LI, Y. G., QIN, R. X., and ZHOU, P. Y. Laser double-frequency lock-in displacement sensor with application to gravitational radiation detection. Experimental Gravitational Physics, World Scientific, Singapore (1988)
[9] WANG, X. H., HUANG, Y. N., and ZHOU, P. Y. Statistical theory of homogeneous isotropic turbulence for incompressible fluids. Science in China Series A-Mathematics, Physics, Astronomy and Technological Science, 37(2), 209-220(1994)
[10] LIN, J. Z., HUANG, Y. N., and ZHOU, P. Y. The new method of solving velocity correlation functions and application to the plane turbulent wake. Acta Mechanica Sinica, 9(2), 102-109(1993)
[11] LIN, J. Z., HUANG, Y. N., and ZHOU, P. Y. An approximate method for solving turbulent velocity correlation functions in channel flows. Chinese Science Bulletin, 40(14), 1167-1172(1995)
[12] MENG, Q. G., HUANG, Y. N., and ZHOU, P. Y. The statistical theory of the plane turbulent mixing layer flow (in Chinese). Journal of Hydrodynamics, 10(4), 443-450(1995)
[13] FAN, M., HUANG, Y. N., and ZHOU, P. Y. The solution for incompressible plane turbulent jet by using the method of successive substitution (in Chinese). Journal of Hydrodynamics, 11(4), 465-470(1996)
[14] TSAI, S. T. and LIN, D. M. A note on a new theory of turbulence. Applied Mathematics and Mechanics (English Edition), 12(1), 101-105(1991) https://doi.org/10.1007/BF02018074
[15] SHI, C. C., HUANG, Y. N., ZHU, Z. X., SU, W. D., and DONG, Y. F. Chaotic phenomena produced by the spherical vortices in the Beltrami flows. Chinese Physics Letters, 9(10), 515-518(1992)
[16] HUANG, Y. N. and HU, X. Superposition about the 3D vortex solutions of the fluid dynamic equation. Applied Mathematics and Mechanics (English Edition), 21(12), 1359-1370(2000) https://doi.org/10.1007/BF02459214
[17] HUANG, Y. N. New development of Prof. Zhou's statistical theory of turbulence (in Chinese). Acta Scientiarum Naturalium, Universitatis Pekinensis, 34(2/3), 151-158(1998)
[18] HUANG, Y. N. and LUO, X. P. On orientation averages for vortex models of turbulence. Physics of Fluids, 11(8), 2381-2386(1999)
[19] SAFFMAN, P. G. and PULLIN, D. I. Calculation of velocity structure functions for vortex models of isotropic turbulence. Physics of Fluids, 8(11), 3072-3084(1996)
[20] HUANG, Y. N. and HU, X. The tensor denotation of Beltrami spherical vortices and their symmetry analysis. Applied Mathematics and Mechanics (English Edition), 23(1), 13-17(2002) https://doi.org/10.1007/BF02437725
[21] LEE, C. B. and LIAN, Q. X. The closed characteristics of the Reynolds equation. Acta Aeronautica et Astronautica Sinica, 14(5), 335-336(1993)
[22] YANG, K., XIA, Z. H., SHI, Y. P., and CHEN, S. Y. Effect of oscillation structures on inertialrange intermittence and topology in turbulent field. Communications in Computational Physics, 19(1), 251-272(2016)
[23] WANG, J. C., SHI, Y. P., WANG, L. P., XIAO, Z. L., HE, X. T., and CHEN, S. Y. Scaling and statistics in three-dimensional compressible turbulence. Physical Review Letters, 108(21), 214505(2012)
[24] WANG, J. C., YANG, Y. T., SHI, Y. P., XIAO, Z. L., HE, X. T., and CHEN, S. Y. Cascade of kinetic energy in three-dimensional compressible turbulence. Physical Review Letters, 110(21), 214505(2013)
[25] WU, T., GENG, C. H., YAO, Y. C., XU, C. X., and HE, G. W. Characteristics of space-time energy spectra in turbulent channel flows. Physical Review Fluids, 2(8), 084609(2017)
[26] HE, G. W., JIN, G. D., and YANG, Y. Space-time correlations and dynamic coupling in turbulent flows. Annual Review of Fluid Mechanics, 49, 51-70(2017)
[27] HE, G. W. and ZHANG, J. B. Elliptic model for space-time correlations in turbulent shear flows. Physical Review E, 73(5), 055303(2006)
[28] HE, G. W., JIN, G. D., and ZHAO, X. Scale-similarity model for Lagrangian velocity correlations in isotropic and stationary turbulence. Physical Review E, 80(6), 066313(2009)
[29] ZHAO, X. and HE, G. W. Space-time correlations of fluctuating velocities in turbulent shear flows. Physical Review E, 79(4), 046316(2009)
[30] HE, X. Z., HE, G. W., and TONG, P. Small-scale turbulent fluctuations beyond Taylor's frozenflow hypothesis. Physical Review E, 81(6), 065303(2010)
[31] GENG, C. H., HE, G. W., WANG, Y. S., XU, C. X., LOZANO-DURAN, A., and WALLACE, J. M. Taylor's hypothesis in turbulent channel flow considered using a transport equation analysis. Physics of Fluids, 27(2), 025111(2015)
[32] HE, G. W., RUBINSTEIN, R., and WANG, L. P. Effects of subgrid-scale modeling on time correlations in large eddy simulation. Physics of Fluids, 14(7), 2186-2193(2002)
[33] YANG, Y., HE, G. W., and WANG, L. P. Effects of subgrid-scale modeling on Lagrangian statistics in large-eddy simulation. Journal of Turbulence, 9, N8(2008)
[34] HE, G. W., WANG, M., and LELE, S. K. On the computation of space-time correlations by large-eddy simulation. Physics of Fluids, 16(11), 3859-3867(2004)
[35] GUO, L., LI, D., ZHANG, X., and HE, G. W. LES prediction of space-time correlations in turbulent shear flows. Acta Mechanica Sinica, 28(4), 993-998(2012)
[36] YAO, H. D. and HE, G. W. A kinematic subgrid scale model for large-eddy simulation of turbulence-generated sound. Journal of Turbulence, 10, N19(2009)
[37] JIN, G. D., HE, G. W., and WANG, L. P. Large-eddy simulation of turbulent collision of heavy particles in isotropic turbulence. Physics of Fluids, 22(5), 055106(2010)
[38] YANG, Y., PULLIN, D. I., and BERMEJO-MORENO, I. Multi-scale geometric analysis of Lagrangian structures in isotropic turbulence. Journal of Fluid Mechanics, 654, 233-270(2010)
[39] YANG, Y. and PULLIN, D. I. On Lagrangian and vortex-surface fields for flows with Taylor Green and Kida-Pelz initial conditions. Journal of Fluid Mechanics, 661, 446-481(2010)
[40] YANG, Y. and PULLIN, D. I. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. Journal of Fluid Mechanics, 685, 146-164(2011)
[41] ZHAO, Y. M., YANG, Y., and CHEN, S. Y. Vortex reconnection in the late transition in channel flow. Journal of Fluid Mechanics, 802, R4(2016)
[42] ZHAO, Y. M., YANG, Y., and CHEN, S. Y. Evolution of material surfaces in the temporal transition in channel flow. Journal of Fluid Mechanics, 793, 840-876(2016)
[43] YANG, Y. and PULLIN, D. I. Geometric study of Lagrangian and Eulerian structures in turbulent channel flow. Journal of Fluid Mechanics, 674, 67-92(2011)
[44] YANG, Y. and PULLIN, D. I. On Lagrangian and vortex-surface fields for flows with TaylorGreen and Kida-Pelz initial conditions. Journal of Fluid Mechanics, 661, 446-481(2010)
[45] YANG, Y. and PULLIN, D. I. Evolution of vortex-surface fields in viscous Taylor-Green and Kida-Pelz flows. Journal of Fluid Mechanics, 685, 146-164(2011)
[46] ZHAO, Y., YANG, Y., and CHEN, S. Evolution of material surfaces in the temporal transition in channel flow. Journal of Fluid Mechanics, 793, 840-876(2016)
[47] ZHAO, Y., XIONG, S., YANG, Y., and CHEN, S. Sinuous distortion of vortex surfaces in the lateral growth of turbulent spots. Physical Review Fluids, 3(7), 074701(2018)
[48] KOLMOGOROV, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Mathematics and Its Applications (Soviet Series) (ed. TIKHOMIROV, V. M.), Vol. 25, Springer, Dordrecht (1991)
[49] KOLMOGOROV, A. N. Dissipation of energy in the locally isotropic turbulence. Proceedings:Mathematical and Physical Sciences, 434(1890), 15-17(1991)
[50] QIAN, J. Scaling exponents of the second-order structure function of turbulence. Journal of Physics A:Mathematical and General, 31(14), 3193-3204(1998)
[51] QIAN, J. Normal and anomalous scaling of turbulence. Physical Review E, 58(6), 7325(1998)
[52] QIAN, J. Closure approach to high-order structure functions of turbulence. Physical Review Letters, 84(4), 646-654(2000)
[53] MCCOMB, W. D. Homogeneous, Isotropic Turbulence:Phenomenology, Renormalization and Statistical Closures, Oxford University Press, Oxford (2014)
[54] SHE, Z. S., CHEN, X., and HUSSAIN, F. Quantifying wall turbulence via a symmetry approach:a lie group theory. Journal of Fluid Mechanics, 827, 322-356(2017)
[55] CHEN, X., HUSSAIN, F., and SHE, Z. S. Quantifying wall turbulence via a symmetry approach, part 2, Reynolds stresses. Journal of Fluid Mechanics, 850, 401-438(2018)
[56] CHEN, X. and SHE, Z. S. Analytic prediction for planar turbulent boundary layers. Science China Physics, Mechanics and Astronomy, 59, 114711(2016)
[57] SHE, Z. S., WU, Y., CHEN, X., and HUSSAIN, F. A multi-state description of roughness effects in turbulent pipe flow. New Journal of Physics, 14(9), 093054(2012)
[58] ZHANG, Y. S., BI, W. T., HUSSAIN, F., LI, X. L., and SHE, Z. S. Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers. Physical Review Letters, 109(5), 054502(2012)
[59] WU, B., BI, W. T., HUSSAIN, F., and SHE, Z. S. On the invariant mean velocity profile for compressible turbulent boundary layers. Journal of Turbulence, 18(182), 186-202(2017)
[60] LUO, J. S., WANG, X. J., and ZHOU, H. Inherent mechanism of breakdown in laminar-turbulent transition of plane channel flows. Science in China Series G:Physics Mechanics and Astronomy, 48(2), 228-236(2005)
[61] TANG, H. T., LUO, J. S., and ZHOU, H. Mechanism of breakdown in laminar-turbulent transition of incompressible boundary layer on a flat plate. Transactions of Tianjin University, 13(2), 79-87(2007)
[62] HUANG, Z. F., WEI, C., and ZHOU, H. The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode. Science in China, 48(5), 614-625(2005)
[63] CAO, W., HUANG, Z. F., and ZHOU, H. Study of the mechanism of breakdown in laminarturbulent transition of a supersonic boundary layer on a flat plate. Applied Mathematics and Mechanics (English Edition), 27(4), 425-434(2006) https://doi.org/10.1007/s10483-006-0401-1
[64] DONG, M. and ZHOU, H. A simulation on bypass transition and its key mechanism. Science China (Physics, Mechanics and Astronomy), 56(4), 775-784(2013)
[65] ZHANG, Y. M. and ZHOU, H. Numerical study of local boundary layer receptivity to freestream vortical disturbances. Applied Mathematics and Mechanics (English Edition), 26(5), 547-554(2005) https://doi.org/10.1007/BF02466327
[66] GAO, J., LUO, J. S., and WU, X. S. Receptivity of hypersonic boundary layer due to fast-slow acoustics interaction. Acta Mechanica Sinica, 31(6), 899-909(2015)
[67] REN, J. and FU, S. Study of the discrete spectrum in a Mach 4.5 Görtler flow. Flow Turbulence and Combustion, 94(2), 339-357(2015)
[68] JIANG, X. Y. and LEE, C. B. Review of research on the receptivity of hypersonic boundary layer. Journal of Experiments in Fluid Mechanics, 31(2), 1-11(2017)
[69] REN, J. and FU, S. Secondary instabilities of Görtler vortices in high-speed boundary layer flows. Journal of Fluid Mechanics, 781, 388-421(2015)
[70] REN, J., FU, S., and HANIFI, A. Stabilization of the hypersonic boundary layer by finiteamplitude streaks. Physics of Fluids, 28(2), 754-203(2016)
[71] SU, C. H. and ZHOU, H. Transition prediction for supersonic and hypersonic boundary layers on a cone with angle of attack. Science in China Series G:Physics, Mechanics and Astronomy, 52(8), 1223-1232(2009)
[72] SU, C. H. and ZHOU, H. Transition prediction of the supersonic boundary layer on a cone under the consideration of receptivity to slow acoustic waves. Science China Physics, Mechanics and Astronomy, 54(10), 1875-1882(2011)
[73] SU, C. H. The reliability of the improved eN method for the transition prediction of boundary layers on a flat plate. Science China Physics, Mechanics and Astronomy, 55(5), 837-843(2012)
[74] SU, C. H. Physical implication of two problems in transition prediction of boundary layers based on linear stability theory. Science China Physics, Mechanics and Astronomy, 57(5), 950-962(2014)
[75] LI, X., FU, D. X., and MA, Y. W. Direct numerical simulation of hypersonic boundary layer transition over a blunt cone. AIAA Journal, 46(11), 2899-2913(2008)
[76] LIANG, X., LI, X. L., FU, D. X., and MA, Y. W. Effects of wall temperature on boundary layer stability over a blunt cone at Mach 7.99. Computers and Fluids, 39(2), 359-371(2010)
[77] SU, C. H. and ZHOU, H. The variation of transition location in response to the variation of the amplitudes of initial disturbances. Science China Physics, Mechanics and Astronomy, 53(6), 1109-1115(2010)
[78] LIU, J. X. and LUO, J. S. Effect of disturbances at inlet on hypersonic boundary layer transition on a blunt cone at small angle of attack. Applied Mathematics and Mechanics (English Edition), 31(5), 535-544(2010) https://doi.org/10.1007/s10483-010-0501-z
[79] LI, J. and LUO, J. S. Applications of parabolized stability equation for predicting transition position in boundary layers. Applied Mathematics and Mechanics (English Edition), 33(6), 679-686(2012) https://doi.org/10.1007/s10483-012-1579-7
[80] ZHANG, Y. M. and ZHOU, H. PSE as applied to problems of transition in compressible boundary layers. Applied Mathematics and Mechanics (English Edition), 29(7), 833-840(2008) https://doi.org/10.1007/s10483-008-0701-8
[81] ZHANG, Y. M. and ZHOU, H. PSE as applied to problems of secondary instability in supersonic boundary layers. Applied Mathematics and Mechanics (English Edition), 29(1), 1-8(2008) https://doi.org/10.1007/s10483-008-0101-7
[82] ZHANG, Y. M. and SU, C. H. Self-consistent parabolized stability equation (PSE) method for compressible boundary layer. Applied Mathematics and Mechanics (English Edition), 36(7), 835-846(2015) https://doi.org/10.1007/s10483-015-1951-9
[83] YU, G. T., GAO, J., and LUO, J. S. Stability analysis method considering non-parallelism:EPSE method and its application. Applied Mathematics and Mechanics (English Edition), 37(1), 27-36(2016) https://doi.org/10.1007/s10483-016-2013-9
[84] GUO, L. L., TANG, D. B., and LIU, J. X. Evolution analysis of TS wave and high-order harmonic waves in boundary layers. Transactions of Nanjing University of Aeronautics & Astronautics, 23, 8-14(2006)
[85] TANG, D. B., MA, Q. R., and CHENG, G. W. Study of compressible nonparallel flow stability for boundary layers. Acta Aeronautica et Astronautica Sinica, 23(2), 166-169(2002)
[86] XIA, H., TANG, D. B., and LU, C. G. Nonparallel stability analysis of three dimensional disturbance wave in boundary layers. Acta Mechanica Sinica, 34(5), 688-695(2002)
[87] GUO, X., TANG, D. B., and SHEN, Q. Boundary layer stability with multiple modes in hypersonic flows. Modern Physics Letters B, 23, 321-324(2009)
[88] LIU, J. X., TANG, D. B., and YANG, Y. Z. On nonlinear-evolution of C-type instability in nonparallel boundary layers. Chinese Journal of Aeronautics, 20(4), 313-319(2007)
[89] TANG, D. B. Boundary Layer Transition, Science Press, Beijing (2015)
[90] LEE, C. B. and CHEN, S. Y. A review of recent progress in the study of transition in hypersonic boundary layer. National Science Review, nwy052(2018)
[91] ZHANG, C. H., TANG, Q., and LEE, C. B. Hypersonic boundary-layer transition on a flared cone. Acta Mechanica Sinica, 29(1), 48-54(2013)
[92] ZHANG, C. H. and LEE, C. B. Rayleigh-scattering visualization of the development of secondmode waves. Journal of Visualization, 20(1), 1-6(2016)
[93] ZHANG, C. H., ZHU, Y. D., CHEN, X., YUAN, H. J., WU, J. Z., CHEN, S. Y., LEE, C. B., and GAD-EL-HAK, M. Transition in hypersonic boundary layers. AIP Advances, 5(10), 107137(2015)
[94] ZHU, Y. D., ZHANG, C. H., CHEN, X., YUAN, H. J., WU, J. Z., CHEN, S. Y., LEE, C. B., and GAD-EL-HAK, M. Transition in hypersonic boundary layers:role of dilatational waves. AIAA Journal, 54, 3039-3049(2016)
[95] ZHU, Y. D., CHEN, X., WU, J. Z., CHEN, S. Y., LEE, C. B., and GAD-EL-HAK, M. Aerodynamic heating in transitional hypersonic boundary layers:role of second-mode instability. Physics of Fluids, 30(1), 011701(2018)
[96] ZHU, Y. D., LEE, C. B., and CHEN, X. Newly identified principle for aerodynamic heating in hypersonic flows. Journal of Fluid Mechanics, 855, 152-180(2018)
[97] SUN, B. H. and ORAN, E. S. New principle for aerodynamic heating. National Science Review, 5, 606-607(2018)
[98] CHEN, X., ZHU, Y. D., and LEE, C. B. Interactions between second mode and low-frequency waves in a hypersonic boundary layer. Journal of Fluid Mechanics, 820, 693-735(2017)
[99] LI, X. L., MA, Y. W., and FU, D. X. High efficient method for incompressible N-S equations and analysis of two-dimensional turbulent channel flow (in Chinese). Acta Mechanica Sinica, 33(5), 577-587(2001)
[100] LI, X. L., MA, Y. W., and FU, D. X. Scaling law in two-dimensional turbulent channel flow (in Chinese). Acta Mechanica Sinica, 34(4), 604-608(2002)
[101] LI, X. L., FU, D. X., and MA, Y. W. Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at Ma=6. Chinese Physics Letters, 23(6), 1519-1522(2006)
[102] LI, X. L., FU, D. X., and MA, Y. W. Assessment of the compressible turbulence model by using the DNS data (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 44, 222-229(2012)
[103] DENG, X. G. and ZHANG, H. X. Developing high-order weighted compact nonlinear schemes. Journal of Computational Physics, 165(1), 22-44(2000)
[104] MA, Y. W. and FU, D. X. Fourth order accurate compact scheme with group velocity control (GVC). Science in China Series A:Mathematics, 44(9), 1197-1204(2001)
[105] DONG, M., LUO, J. S., and CAO, W. Numerical investigation of the evolution of disturbances in supersonic sharp cone boundary layers. Applied Mathematics and Mechanics (English Edition), 27(6), 713-719(2006) https://doi.org/10.1007/s10483-006-0601-1
[106] DONG, M. and LUO, J. S. Mechanism of transition in a hypersonic sharp cone boundary layer with zero angle of attack. Applied Mathematics and Mechanics (English Edition), 28(8), 1019-1028(2007) https://doi.org/10.1007/s10483-007-0804-2
[107] DONG, M. and ZHOU, H. Inflow boundary condition for DNS of turbulent boundary layers on supersonic blunt cones. Applied Mathematics and Mechanics (English Edition), 29(8), 985-998(2008) https://doi.org/10.1007/s10483-008-0802-3
[108] DONG, M. and LUO, J. S. The influence of the turbulent statistical characteristics by cone effect in a supersonic boundary layer (in Chinese). Chinese Journal of Theoretical and Applied Mechanics, 40(3), 394-401(2008)
[109] DONG, M. Direct numerical simulation of a spatially evolving hypersonic blunt cone turbulent boundary layer at Mach 6(in Chinese). Acta Aerodynamica Sinica, 27(2), 199-205(2009)
[110] DONG, M. and ZHOU, H. Improvement of turbulent mode in the calculation of aerodynamic heat in hypersonic turbulent boundary layer (in Chinese). Scientia Sinica Physica, Mechanica and Astronomica, 40(2), 231-241(2010)
[111] LI, Q. B. and FU, S. High-order accurate gas-kinetic scheme and turbulence simulation (in Chinese). Scientia Sinica Physica, Mechanica and Astronomica, 44(3), 278-284(2014)
[112] LI, Q. B., TAN, S., FU, S., and XU, K. Numerical simulation of compressible turbulence with gas-kinetic BGK scheme. 13th Asian Congress of Fluid Mechanics, Dhaka, Bangladesh, 12-17(2010)
[113] TAN, S., LI, Q. B., FU, S., and ZENG, S. Engineering simulation of turbulence with gas-kinetic BGK scheme. AIP Conference Proceedings, 1376, 78-80(2011)
[114] FU, S. and LI, Q. B. Numerical simulation of compressible mixing layers. International Journal of Heat and Fluid Flow, 27(5), 895-901(2006)
[115] FU, S. and GUO, Y. Study of wall-parameter-free low-Reynolds-number nonlinear eddy-viscosity model (in Chinese). Acta Mechanica Sinica, 33(2), 145-152(2001)
[116] ZHANG, G. H. and FU, S. Second-moment closure modelling of the compressible homogeneous turbulent shear flow (in Chinese). Acta Mechanica Sinica, 32(2), 141-150(2000)
[117] KRAICHNAN, R. H. and CHEN, S. Y. Is there a statistical mechanics of turbulence? Physica D:Nonlinear Phenomena, 37(1-3), 160-172(1989)
[118] MENEVEAU, C. Statistics of turbulence subgrid-scale stresses:necessary conditions and experimental tests. Physics of Fluids, 6(2), 815-833(1994)
[119] SHI, Y. P., XIAO, Z. L., and CHEN, S. Y. Constrained subgrid-scale stress model for large eddy simulation. Physics of Fluids, 20(1), 011701(2008)
[120] MENEVEAU, C. Germano identity-based subgrid-scale modeling:a brief survey of variations on a fertile theme. Physics of Fluids, 24(12), 121301(2012)
[121] CHEN, S. Y., XIA, Z. H., PEI, S. Y., WANG, J. C., YANG, Y. T., XIAO, Z. L., and SHI, Y. P. Reynolds-stress-constrained large-eddy simulation of wall-bounded turbulent flows. Journal of Fluid Mechanics, 703, 1-28(2012)
[122] CHEN, S. Y., CHEN, Y. C., XIA, Z. H., QU, K., SHI, Y. P., XIAO, Z. L., LIU, Q. H., CAI, Q. D., LIU, F., LEE, C. B., ZHANG, R. K., and CAI, J. S. Constrained large-eddy simulation and detached eddy simulation of flow past a commercial aircraft at 14 degrees angle of attack. Science China Physics, Mechanics and Astronomy, 56(2), 270-276(2013)
[123] CHEN, S. Y., WANG, M. R., and XIA, Z. H. Multiscale fluid mechanics and modeling. Procedia IUTAM, 10, 100-114(2014)
[124] LI, J. C. and XIE, Z. T. Large-eddy simulation for canopy turbulent flow (in Chinese). Acta Mechanica Sinica, 31(4), 406-415(1999)
[125] LI, J. C. Large eddy simulation of complex turbulent flows:physical aspects and research trends. Acta Mechanica Sinica, 17(4), 289-301(2001)
[126] CUI, G. X., SHI, R. F., WANG, Z. S., XU, C. X., and ZHANG, Z. S. Large eddy simulation of city micro-atmospheric environment. Science in China Series G:Physics, Mechanics and Astronomy, 51(8), 933-944(2008)
[127] CUI, G. X., XU, C. X., FANG, L., SHAO, L., and ZHANG, Z. S. A new subgrid eddy-viscosity model for large-eddy simulation of anisotropic turbulence. Journal of Fluid Mechanics, 582, 377-397(2007)
[128] LU, X. Y. and DALTON, C. Calculation of the timing of vortex formation from an oscillating cylinder. Journal of Fluids and Structures, 10(5), 527-541(1996)
[129] LU, X. Y. and SATO, J. A numerical study of flow past a rotationally oscillating circular cylinder. Journal of Fluids and Structures, 10(8), 829-849(1996)
[130] LU, X. Y., DALTON, C., and ZHANG, J. F. Application of large eddy simulation to an oscillating flow past a circular cylinder. Journal of Fluids Engineering, 119(3), 519-525(1997)
[131] ZHOU, Y. and ANTONIA, R. A. A study of turbulent vortices in the near wake of a cylinder. Journal of Fluid Mechanics, 253, 643-661(1993)
[132] ZHOU, Y. and ANTONIA, R. A. Critical points in a turbulent near wake. Journal of Fluid Mechanics, 275, 59-81(1994)
[133] ZHANG, H. J., ZHOU, Y., and ANTONIA, R. A. Longitudinal and spanwise vortical structures in a turbulent near wake. Physics of Fluids, 12(11), 2954-2964(2000)
[134] RINOSHIKA, A. and ZHOU, Y. Orthogonal wavelet multi-resolution analysis of a turbulent cylinder wake. Journal of Fluid Mechanics, 524, 229-248(2005)
[135] WANG, H. F., ZHOU, Y., CHAN, C. K., and LAM, K. S. Effect of initial conditions on interaction between a boundary layer and a wall-mounted finite-length-cylinder wake. Physics of Fluids, 18(6), 065106(2006)
[136] XU, S. J., ZHOU, Y., and WANG, M. H. A symmetric binary-vortex street behind a longitudinally oscillating cylinder. Journal of Fluid Mechanics, 556, 27-43(2006)
[137] ALAM, M. D. M. and ZHOU, Y. Turbulent wake of an inclined cylinder with water running. Journal of Fluid Mechanics, 589, 261-303(2007)
[138] HU, J. C. and ZHOU, Y. Flow structure behind two staggered circular cylinders, part 2, heat and momentum transport. Journal of Fluid Mechanics, 607, 81-107(2008)
[139] HU, J. C. and ZHOU, Y. Flow structure behind two staggered circular cylinders, part 1, downstream evolution and classification. Journal of Fluid Mechanics, 607, 51-80(2008)
[140] ZHOU, T., WANG, H., RAZALI, S. M., ZHOU, Y., and CHENG, L. Three-dimensional vorticity measurements in the wake of a yawed circular cylinder. Physics of Fluids, 22(1), 015108(2010)
[141] BAI, Y., JIA, Y. X., LEE, C. B., and ZHU, Y. D. Experimental study of a periodical flapping flag. Acta Physica Sinica, 65(12), 178-184(2016)
[142] ZHANG, M. M., CHENG, L., and ZHOU, Y. Closed-loop-controlled vortex shedding and vibration of a flexibly supported square cylinder under different schemes. Physics of Fluids, 16(5), 1439-1448(2004)
[143] WANG, H. F. and ZHOU, Y. The finite-length square cylinder near wake. Journal of Fluid Mechanics, 638, 453-490(2009)
[144] ALAM, M. M., ZHOU, Y., and WANG, X. W. The wake of two side-by-side square cylinders. Journal of Fluid Mechanics, 669, 432-471(2011)
[145] XIA, Z. H., SHI, Y. P., CAI, Q. D., and GAI, J. Dissipation function in turbulent plane Poiseuille and Couette flows subject to spanwise rotations. Applied Mathematics and Mechanics (English Edition), 40(2), 185-192(2019) https://doi.org/10.1007/s10483-019-2422-6
[146] DONG, G. J. and LU, X. Y. Characteristics of flow over traveling wavy foils in a side-by-side arrangement. Physics of Fluids, 19(5), 057107(2007)
[147] LU, X. Y. and LIAO, Q. Dynamic responses of a two-dimensional flapping foil motion. Physics of Fluids, 18(9), 098104(2006)
[148] LU, X. Y. and YIN, X. Z. Propulsive performance of a fish-like travelling wavy wall. Acta Mechanica, 175(1-4), 197-215(2005)
[149] LEE, C. B. and WU, J. Z. Transition in wall-bounded flows. Applied Mechanics Reviews, 61(3), 030802(2008)
[150] LEE, C. B. New features of CS solitons and the formation of vortices. Physics Letters A, 247(6), 397-402(1998)
[151] LEE, C. B. and WANG, S. Study of the shock motion in a hypersonic shock system/turbulent boundary layer interaction. Experiments in Fluids, 19(3), 143-149(1995)
[152] LEE, C. B., HONG, Z. X., KACHANOV, Y. S., BORODULIN, V., and GAPONENKO, V. A study in transitional flat plate boundary layers:measurement and visualization. Experiments in Fluids, 28(3), 243-251(2000)
[153] LEE, C. B. Possible universal transitional scenario in a at plate boundary layer:measurement and visualization. Physical Review E, 62(3), 3659-3670(2000)
[154] HAMA, F. R. and NUTANT, J. Detailed flow-field observations in the transition process in a thick boundary layer. Procecdings of 1963 Heat Transfer and Fluid Mechanics, Stanford University Press, Stanford (1963)
[155] LEE, C. B. CS-soliton:its feature and importance (in Chinese). Experiments and Measurements in Fluid Mechanics, 17(3), 57-60(2003)
[156] LEE, C. B. and LI, R. Q. Dominant structure for turbulent production in a transitional boundary layer. Journal of Turbulence, 8, N55(2007)
[157] LEE, C. B. On the formation of the streamwise vortex in a transitional boundary layer. Acta Physica Sinica, 50(1), 182-184(2001)
[158] ZHAO, Y. M., YANG, Y., and CHEN, S. Y. Evolution of material surfaces in the temporal transition in channel flow. Journal of Fluid Mechanics, 793, 840-876(2016)
[159] LIAN, Q. X. A visual study of the coherent structure of the turbulent boundary layer in flow with adverse pressure gradient. Journal of Fluid Mechanics, 215, 101-124(1990)
[160] LIAN, Q. X. A kind of fast changing coherent structure in a turbulent boundary layer. Acta Mechanica Sinica, 15(3), 193-200(1999)
[161] GUO, H., LIAN, Q. X., LI, Y., and WANG, H. W. A visual study on complex flow structures and flow breakdown in a boundary layer transition. Experiments in Fluids, 37(3), 311-322(2004)
[162] GUO, H., LI, X. H., WANG, H. W., and FENG, Y. L. Experimental study on boundary-layer transition control by spanwise discrete suction. Journal of Experiments in Fluid Mechanics, 28(6), 13-19(2014)
[163] GONG, A. L., LI, R. Q., and LEE, C. B. On the generation of low-frequency signals in a transitional boundary layer. Acta Physica Sinica, 51(5), 1068-1074(2002)
[164] MENG, Q. G., LI, R. Q., and LEE, C. B. A link between the turbulent cascade and the dynamics of transition. Acta Physica Sinica, 53(8), 2621-2624(2004)
[165] MENG, Q. G., CAI, Q. D., and LEE, C. B. Limitation for the energy spectrum analysis for the understanding of the turbulent cascade. Acta Physica Sinica, 53(9), 3090-3093(2004)
[166] LI, R. Q. and LEE, C. B. A link between chaos dynamics and the onset of turbulence in a transitional boundary layer. Acta Physica Sinica, 51(8), 1743-1749(2002)
[167] LI, R. Q. and LEE, C. B. Problems in the paper "a link between chaos dynamics and the onset of turbulence in a transitional boundary layer". Acta Physica Sinica, 54(1), 1743-1749(2005)
[168] GAO, Q., ORTIZ-DUENAS, C., and LONGMIRE, E. Circulation signature of vortical structures in turbulent boundary layers. 16th Australasian Fluid Mechanics Conference (AFMC), The University of Queensland, Brisbane, 135-141(2007)
[169] GAO, Q., ORTIZ-DUENAS, C., and LONGMIRE, E. Analysis of vortex populations in turbulent wall-bounded flows. Journal of Fluid Mechanics, 678, 87-123(2011)
[170] GAO, Q., ORTIZ-DUENAS, C., and LONGMIRE, E. Evolution of coherent structures in turbulent boundary layers based on moving tomographic PIV. Experiments in Fluids, 54(12), 1625(2013)
[171] WANG, J. J., ZHANG, C., and PAN, C. Effects of roughness elements on bypass transition induced by a circular cylinder wake. Journal of Visualization, 14(1), 53-61(2011)
[172] ZHANG, C., PAN, C., and WANG, J. J. Evolution of vortex structure in boundary layer transition induced by roughness elements. Experiments in Fluids, 51(5), 1343-1352(2011)
[173] HE, G. S., WANG, J. J., and PAN, C. Initial growth of a disturbance in a boundary layer influenced by a circular cylinder wake. Journal of Fluid Mechanics, 718, 116-130(2013)
[174] PAN, C., WANG, J. J., and HE, G. S. Experimental investigation of wake-induced bypass transition control by surface roughness. Chinese Physics Letters, 29(10), 104704(2012)
[175] PAN, C., WANG, J. J., and ZHANG, C. Identification of Lagrangian coherent structures in the turbulent boundary layer. Science in China Series G:Physics, Mechanics and Astronomy, 52(2), 248-257(2009)
[176] PAN, C., WANG, J. J., ZHANG, P. F., and FENG, L. H. Coherent structures in bypass transition induced by a cylinder wake. Journal of Fluid Mechanics, 603, 367-389(2008)
[177] HE, G. S., PAN, C., FENG, L. H., GAO, Q., and WANG, J. J. Evolution of Lagrangian coherent structures in a cylinder-wake disturbed at plate boundary layer. Journal of Fluid Mechanics, 792, 274-306(2016)
[178] FENG, L. H., WANG, J. J., and PAN, C. Proper orthogonal decomposition analysis of vortex dynamics of a circular cylinder under synthetic jet control. Physics of Fluids, 23(1), 014106(2011)
[179] WANG, J. J., PAN, C., and ZHANG, P. F. On the instability and reproduction mechanism of a laminar streak. Journal of Turbulence, 10, N26(2009)
[180] ZHANG, Z., SUN, Z. L., and YAN, D. C. Experimental research on the mechanism of reverse transition in turbulent boundary layer. Acta Scientiarum Naturalium-Universitatis Pekinensis, 42(3), 305-309(2006)
[181] FAN, Q. L., WANG, L. T., ZHANG, H. Q., GUO, Y. C., and LIN, W. Y. Coherent structures in turbulent round jets. Advances in Mechanics, 32, 109-118(2002)
[182] FAN, Q. L., ZHANG, H. Q., GUO, Y. C., and WANG, X. L. Particle-vortex interactions in turbulent shear flows. Advances in Mechanics, 31, 611-620(2001)
[183] WANG, J. J. and XIA, K. Q. Advances in experimental investigation of Rayleigh-Benard turbulent convection. Advances in Mechanics, 29, 557-566(1999)
[184] WANG, S. F., JIANG, F., NIU, Z. N., and WU, Z. Z. An experimental study on turbulent coherent structures near a sheared air-water interface. Acta Mechanica Sinica, 15(4), 289-298(1999)
[185] ZHONG, H. J., CHEN, S. Y., and LEE, C. B. Experimental study of freely falling thin disks:transition from planar zigzag to spiral. Physics of Fluids, 23(1), 011702(2011)
[186] LEE, C. B., SU, Z., ZHONG, H., CHEN, S., ZHOU, M., and WU, J. Experimental investigation of freely falling thin disks, part 2, transition of three-dimensional motion from zigzag to spiral. Journal of Fluid Mechanics, 732, 77-104(2013)
[187] JIA, L. C., ZHU, Y. D., JIA, Y. X., YUAN, H. J., and LEE, C. B. Image pre-processing method for near-wall PIV measurements over moving curved interfaces. Measurement Science and Technology, 28(3), 035201(2017)
[188] JIA, L. C., ZOU, T. D., ZHU, Y. D., and LEE, C. B. Rotor boundary layer development with inlet guide vane (IGV) wake impingement. Physics of Fluids, 30(4), 040911(2018)
[189] LI, C. and ZHANG, Y. C. Effect of glow discharge on hypersonic flat plate boundary layer. Applied Mathematics and Mechanics (English Edition), 40(2), 249-260(2019) https://doi.org/10.1007/s10483-019-2424-9
[190] ZHANG, Y. C. and LI, C. Transition control of Mach 6.5 hypersonic flat plate boundary layer. Applied Mathematics and Mechanics (English Edition), 40(2), 283-292(2019) https://doi.org/10.1007/s10483-019-2423-8
[191] ZHU, Y. D., YUAN, H. J., ZHANG, C. H., and LEE, C. B. Image-preprocessing method for nearwall particle image velocimetry (PIV) image interrogation with very large in-plane displacement. Measurement Science and Technology, 24(12), 125302(2013)
[192] ZHU, Y. D. Experimental and numerical study of flow structures of the second-mode instability. Applied Mathematics and Mechanics (English Edition), 40(2), 273-282(2019) https://doi.org/10.1007/s10483-019-2430-9
[193] YI, S. H., TIAN, L. F., ZHAO, Y. X., and HE, L. The new advance of the experimental research on compressible turbulence based on the NPLS technique. Advances in Mechanics, 41, 379-390(2011)
[194] HUANG, N. and ZHENG, X. J. A laboratory test of the electrification phenomenon in windblown sand flux. Chinese Science Bulletin, 46(5), 417-420(2001)
[195] ZHENG, X. J., HUANG, N., and ZHOU, Y. H. Laboratory measurement of electrification of wind-blown sands and simulation of its effect on sand saltation movement. Journal of Geophysical Research:Atmospheres, 108(D10), 4322(2003)
[196] ZHENG, X. J., ZHANG, R., and HUANG, H. J. Theoretical modeling of relative humidity on contact electrification of sand particles. Scientific Reports, 4, 4399(2014)
[197] ZHENG, X. J. and WANG, P. Numerical simulation on stochastic movement of sands in windblown sand. Journal of Desert Research, 26(2), 184-188(2006)
[198] BO, T. L. and ZHENG, X. J. Numerical simulation of the evolution and propagation of aeolian dune fields toward a desert-oasis zone. Geomorphology, 180, 24-32(2013)
[199] CHEN, X. R., DENG, X. Y., WANG, Y. K., LIU, P. Q., and GU, Z. F. Influence of nose perturbations on behaviors of asymmetric vortices over slender body. Acta Mechanica Sinica, 18(6), 581-593(2002) |