[1] CHANG, C. L., VINH, H., and MALIK, M. R. Hypersonic boundary-layer stability with chemical reactions using PSE. 28th Fluid Dynamics Conference, Snowmass Village (1994) [2] MACK, L. M. Boundary-Layer Stability Theory, Springer, Berlin Heidelberg (1969) [3] MACK, L. M. Linear stability theory and the problem of supersonic boundary-layer transition. AIAA Journal, 13, 278-289(1975) [4] MALIK, M. R. and ANDERSON, E. C. Real gas effects on hypersonic boundary-layer stability. Physics of Fluids A:Fluid Dynamics, 3, 803-821(1991) [5] HUDSON, M. L., CHOKANI, N., and CANDLER, G. V. Linear stability of hypersonic flow in thermochemical nonequilibrium. AIAA Journal, 35, 958-964(1997) [6] MA, Y. B. and ZHONG, X. L. Direct numerical simulation of instability of nonequilibrium reacting hypersonic boundary layers. 38th Aerospace Sciences Meeting and Exhibit, Reno, U. S. A. (2000) [7] PRAKASH, A. and ZHONG, X. L. Numerical simulation of planetary reentry aeroheating over blunt bodies with non-equilibrium reacting flow and surface reactions. 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, Florida (2009) [8] MORTENSEN, C. H. and ZHONG, X. L. Simulation of second-mode instability in a real-gas hypersonic flow with graphite ablation. AIAA Journal, 52, 1632-1652(2014) [9] MARXEN, O., IACCARINO, G., and SHAQFEH, E. Hypersonic boundary-layer instability with chemical reactions. 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando (2010) [10] MARXEN, O., IACCARINO, G., and MAGIN, T. E. Direct numerical simulations of hypersonic boundary-layer transition with finite-rate chemistry. Journal of Fluid Mechanics, 755, 35-49(2014) [11] MARXEN, O., IACCARINO, G., and SHAQFEH, E. Numerical simulation of hypersonic boundary-layer instability using different gas models. Annual Research Briefs, 2007, 15-27(2007) [12] MORTENSEN, C. H. and ZHONG, X. L. Real-gas and surface-ablation effects on hypersonic boundary-layer instability over a blunt cone. AIAA Journal, 54, 980-998(2016) [13] FAN, M., CAO, W., and FANG, X. J. Prediction of hypersonic boundary layer transition with variable specific heat on plane flow. Science China, 54, 2064-2070(2011) [14] FAN, Y., WAN, B. B., HAN, Y. F., and LUO, J. S. Hydrodynamic stability and transition prediction with the chemical equilibrium gas model (in Chinese). Journal of Aerospace Power, 7, 1658-1668(2016) [15] JOHNSON, H. B., SEIPP, T. G., and CANDLER, G. V. Numerical study of hypersonic reacting boundary layer transition on cones. Physics of Fluids, 10, 2676-2685(1998) [16] WAN, B. B., HAN, Y. F., FAN, Y., and LUO, J. S. Effect of transport properties of hightemperature air on boundary layer stability and transition prediction (in Chinese). Journal of Aerospace Power, 10, 188-195(2017) [17] GUPTA, R. N., YOS, J. M., THOMPSON, R. A., and LEE, K. P. A Review of Reaction Rates and Thermodynamic and Transport Properties for an 11-Species Air Model for Chemical and Thermal Nonequilibrium Calculations to 30000 K, National Aeronautics and Space Administration, Hampton (1990) [18] MALIK, M. R. Numerical methods for hypersonic boundary layer stability. Journal of Computational Physics, 86, 376-413(1990) [19] MALIK, M. R. Finite Difference Solution of the Compressible Stability Eigenvalue Problem, NASA Technical Report, National Aeronautics and Space Administration, Washington, D. C. (1990) [20] SALEMI, L. and FASEL, H. F. Linearized Navier-Stokes simulation of the spatial stability of a hypersonic boundary layer in chemical equilibrium. 43rd AIAA Fluid Dynamics Conference, Reno (2013) [21] ARNAL, D. Boundary layer transition:predictions based on linear theory. Special Course on Progress in Transition Modelling, Agard Lab, Toulouse (1994) [22] JAFFE, N. A., OKAMURA, T. T., and SMITH, A. M. O. Determination of spatial amplification factors and their application to predicting transition. AIAA Journal, 8, 301-308(1970) [23] CHEN, F. J., MALIK, M. R., and BECKWITH, I. E. Boundary-layer transition on a cone and flat plate at Mach 3.5. AIAA Journal, 27, 687-693(1989) |