[1] Kritsuk, A. G., Norman, M. L., Padoan, P., andWagner, R. The statistics of supersonic isothermal turbulence. The Astrophysical Journal, 665, 416-431 (2007)
[2] Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge (2008)
[3] Lee, C. B. and Wu, J. Z. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802 (2008)
[4] She, Z. S., Chen, X., Wu, Y., and Hussain, F. New perspective in statistical modeling of wallbounded turbulence. Acta Mechanica Sinica, 26, 847-861 (2010)
[5] Zhang, Y. S., Bi, W. T., Hussain, F., Li, X. L., and She, Z. S. Mach-number-invariant meanvelocity profile of compressible turbulent boundary layers. Physical Review Letters, 109, 054502 (2012)
[6] Zhou, H. and Zhang, H. X. What is the essence of the so-called century lasting difficult problem in classic physics, the “problem of turbulence”? Scienta Sinica: Physica, Mechanica and Astronomica, 42, 1-5 (2012)
[7] Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. T., and Chen, S. Cascade of kinetic energy in three-dimensional compressible turbulence. Physical Review Letters, 110, 214505 (2013)
[8] Chen, S. Y., Xia, Z. H., Wang, J. C., and Yang, Y. T. Recent progress in compressible turbulence. Acta Mechanica Sinica, 31, 275-291 (2015)
[9] Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large Reynolds number. Proceedings of the Royal Society of London, 434, 9-13 (1991)
[10] Kolmogorov, A. N. On degeneration (decay) of isotropic turbulence in an incompressible visous liquid. Doklady Akademii Nauk SSSR, 31, 538-540 (1941)
[11] Kolmogorov, A. N. Dissipation of energy in locally isotropic turbulence. Proceedings of the Royal Society of London, 434, 15-17 (1991)
[12] Aluie, H. Compressible turbulence: the cascade and its locality. Physical Review Letters, 106, 174502 (2011)
[13] Aluie, H., Li, S., and Li, H. Conservative cascade of kinetic energy in compressible turbulence. Astrophysical Journal Letters, 751, L29 (2012)
[14] Aluie, H. Scale decomposition in compressible turbulence. Physica D: Nonlinear Phenomena, 247, 54-65 (2013)
[15] Armstrong, J. W., Spangler, S. R., and Rickett, B. J. Electron density power spectrum in the local interstellar medium. The Astrophysical Journal, 443, 209-221 (1995)
[16] Cardy, J., Falkovich, G., and Gawedzki, K. Nonequilibrium Statistical Mechanics and Turbulence, Cambridge University Press, Cambridge (2008)
[17] Chu, B. T. and Kovasznay, L. S. G. Non-linear interactions in a viscous heatconducting compressible gas. Journal of Fluid Mechanics, 3, 494-514 (1958)
[18] Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt,W., and Mac Low, M. M. Comparing the statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive turbulence forcing. Astronomy and Astrophysics, 512, A81 (2010)
[19] Wang, J. Cascade of Kinetic Energy and Thermodynamic Process in Compressible Turbulence (in Chinese), Post-Doctoral Research Report, Peking University (2014)
[20] Schmidt, W., Federrath, C., and Klessen, R. Is the scaling of supersonic turbulence universal? Physical Review Letters, 101, 194505 (2008)
[21] Galtier, S. and Banerjee, S. Exact relation for correlation functions in compressible isothermal turbulence. Physical Review Letters, 107, 134501 (2011)
[22] Sun, B. H. The spatial scaling laws of compressible turbulence. https://arxiv.org/ abs/1502.02815v5 (2016)
[23] Kovasznay, L. S. G. Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 20, 657-674 (1953)
[24] Lighthill, M. J. The effect of compressibility on turbulence. Proceedings from the 2nd International Astronomical Union Symposium on Gas Dynamics of Cosmic Clouds, North Holland Publishing Company, Amsterdam (1955)
[25] Moiseev, S. S., Toor, A. V., and Yanovsky, V. V. The decay of turbulence in the Burgers model. Physica D: Nonlinear Phenomena, 2, 187-193 (1981)
[26] Kadomtsev, B. B. and Petviashvili, V. I. Acoustic turbulence. Soviet Physics Doklady, 18, 115-118 (1973)
[27] Shivamoggi, B. K. Multifractal aspects of the scaling laws in fully developed compressible turbulence. Annals of Physics, 243, 169-176 (1995)
[28] Bridgman, P. W. Dimensional Analysis, Yale University Press, New Haven (1922)
[29] Sedov, L. I. Similarity and Dimensional Analysis in Mechanics, Academic Press, New York (1959)
[30] Barenblatt, G. I. Similarity, Self-similarity and Intermediate Asymptotics, Cambridge University Press, Cambridge (1996)
[31] Cantwell, B. J. Introduction to Symmetry Analysis, Cambridge University Press, Cambridge (2002)
[32] Sun, B. H. Dimensional Analysis and Lie Group (in Chinese), China High Education Press, Bejing (2016)
[33] Liepmann, H.W. and Roshko, A. Elements of Gasdynamics, Dover Publications, New York (1993)
[34] Von Weizsäcker, C. F. The evolution of galaxies and stars. The Astrophysical Journal, 114, 165-186 (1951)
[35] Fleck, R. C., Jr. Scaling relations for the turbulenct, non-self-gravitating, neutral component of the interstellar medium. The Astrophysical Journal, 458, 739-741 (1996)
[36] Meneveau, C. and Sreenivasan, K. R. Interface dimension in intermittent turbulence. Physical Review A, 41, 2246-2248 (1990)
[37] Sun, B. H. The temporal scaling laws of compressible turbulence. Modern Physics Letters B, 30, 1650297 (2016) |