[1] HERMANN, M. and SARAVI, M. Nonlinear Ordinary Differential Equations, Springer, India (2016) [2] ZHANG, J., FANG, T. G., and ZHONG, Y. F. Analytical solution of magnetohydrodynamic sink flow. Applied Mathematics and Mechanics (English Edition), 32(10), 1221-1230(2011) https://doi.org/10.1007/s10483-011-1495-9 [3] SU, X. H. and ZHENG, L. C. Approximate solutions to MHD Falkner-Skan flow over permeable wall. Applied Mathematics and Mechanics (English Edition), 32(4), 401-408(2011) https://doi.org/10.1007/s10483-011-1425-9 [4] BAKODAH, H. O., EBAID, A., and WAZWAZ, A. M. Analytical and numerical treatment of Falkner-Skan equation via a transformation and Adomian's method. Romanian Reports in Physics, 70, 1-17(2018) [5] RAMADAN, M. A., RASLAN, K. R., EL-DANAF, T. S., and ABD-EL-SALAM, M. A. An exponential Chebyshev second kind approximation for solving high-order ordinary differential equations in unbounded domains with application to Dawson's integral. Journal of the Egyptian Mathematical Society, 25(2), 197-205(2017) [6] RAMADAN, M. A., RASLAN, K. R., EL-DANAF, T. S., and ABD-EL-SALAM, M. A. On the exponential Chebyshev approximation in unbounded domains:a comparison study for solving high-order ordinary differential equations. International Journal of Pure and Applied Mathematics, 105(3), 399-413(2015) [7] ABBASBANDY, S., HAYAT, T., GHEHSAREH, H. R., and ALSAEDI, A. MHD Falkner-Skan flow of Maxwell fluid by rational Chebyshev collocation method. Applied Mathematics and Mechanics (English Edition), 34(8), 921-930(2013) https://doi.org/10.1007/s10483-013-1717-7 [8] SEZER, M., GÜLSU, M., and TANAY, B. Rational Chebyshev collocation method for solving higher-order linear ordinary differential equations. Numerical Methods for Partial Differential Equations, 27(5), 1130-1142(2011) [9] ZHANG, J. and CHEN, B. An iterative method for solving the Falkner-Skan equation. Applied Mathematics and Computation, 210(1), 215-222(2009) [10] LAKESTANI, M. Numerical solution for the Falkner-Skan equation using Chebyshev cardinal functions. Acta Universitatis Apulensis, 27, 229-238(2011) [11] KAJANI, M. T., MALEKI, M., and ALLAME, M. A numerical solution of Falkner-Skan equation via a shifted Chebyshev collocation method. AIP Conference Proceedings, 1629, 381-386(2014) [12] ASAITHAMBI, A. Numerical solution of the Falkner-Skan equation using piecewise linear functions. Applied Mathematics and Computation, 159(1), 267-273(2004) [13] GUO, B. Y., SHEN, J., and WANG, Z. Q. A rational approximation and its applications to differential equations on the half line. Journal of Scientific Computing, 15(2), 117-147(2000) [14] ELBARBARY, E. M. Chebyshev finite difference method for the solution of boundary-layer equations. Applied Mathematics and Computation, 160(2), 487-498(2005) [15] ABBASBANDY, S. A numerical solution of Blasius equation by Adomian's decomposition method and comparison with homotopy perturbation method. Chaos, Solitons and Fractals, 31(1), 257-260(2007) [16] YAO, B. Approximate analytical solution to the Falkner-Skan wedge flow with the permeable wall of uniform suction. Communications in Nonlinear Science and Numerical Simulation, 14(8), 3320-3326(2009) [17] PARAND, K., DEHGHAN, M., and PIRKHEDRRI, A. The use of Sinc-collocation method for solving Falkner-Skan boundary-layer equation. International Journal for Numerical Methods in Fluids, 68(1), 36-47(2012) [18] ASAITHAMBI, A. A finite-difference method for the Falkner-Skan equation. Applied Mathematics and Computation, 92(2-3), 135-141(1998) [19] PARAND, K., PAKNIAT, N., and DELAFKAR, Z. Numerical solution of the Falkner-Skan equation with stretching boundary by collocation method. International Journal of Nonlinear Science, 11(3), 275-283(2011) [20] EL-HAWARY, H. M. A deficient spline function approximation for boundary layer flow. International Journal of Numerical Methods for Heat and Fluid Flow, 11(3), 227-236(2001) [21] FAZIO, R. The Falkneer-Skan equation:numerical solutions within group invariance theory. Calcolo, 31(1-2), 115-124(1994) [22] PARAND, K., HASHEMI, S., and GHADERI, A. Application of Gegenbaer neural network to solve the MHD Falkner-Skan flow. The Second National Conference on Meta-Heuristic Algorithms and Their Applications in Engineering and Science, Payame Noor University, Najafabad (2017) [23] KARKERA, H., KATAGI, N. N., and KUDENATTI, R. B. Analysis of general unified MHD boundary-layer flow of a viscous fluid-a novel numerical approach through wavelets. Mathematics and Computers in Simulation, 168, 135-154(2020) [24] HAJISHAFIEIHA, J. and ABBASBANDY, S. A new class of polynomial functions for approximate solution of generalized Benjamin-Bona-Mahony-Burgers (gBBMB) equations. Applied Mathematics and Computation, 367, 124765(2020) [25] HAJISHAFIEIHA, J. and ABBASBANDY, S. A new method based on polynomials equipped with a parameter to solve two parabolic inverse problems with a nonlocal boundary condition. Inverse Problems in Science and Engineering, 28(5), 739-753(2020) [26] ABBASBANDY, S., NAZ, R., HAYAT, T., and ALSAEDI, A. Numerical and analytical solutions for Falkner-Skan flow of MHD Maxwell fluid. Applied Mathematics and Computation, 242, 569-575(2014) [27] ROSENHEAD, L. Laminar Boundary Layers:An Account of the Development, Structure, and Stability of Laminar Boundary Layers in Incompressible Fluids, Together with a Description of the Associated Experimental Techniques, Clarendon Press, Oxford (1963) [28] ABBASBANDY, S. A new class of polynomial functions equipped with a parameter. Mathematical Sciences, 11, 127-130(2017) [29] BERNARDI, C. and MADAY, Y. Spectral method. In Handbook of Numerical Analysis, (eds. CIARLET, P. G. and LIONS, L. L.). Vol. 5(Part 2), Elsevier, Amsterdam (1997) [30] NASR, H., HASSANIEN, I. A., and EL-HAWARY, H. M. Chebyshev solution of laminar boundary layer flow. International Journal of Computer Mathematics, 33(1-2), 127-132(1990) [31] ABBASBANDY, S. and HAYAT, T. Solution of the MHD Falkner-Skan flow by homotopy analysis method. Communications in Nonlinear Science and Numerical Simulation, 14(9-10), 3591-3598(2009) |