[1] ALFVÉN, H. Existence of electromagnetic-hydrodynamic waves. nature, 150, 405-406(1942) [2] LUNDQUIST, S. Experimental demonstration of magneto-hydrodynamic waves. nature, 164, 145-146(1949) [3] HERLOFSON, N. Magneto-hydrodynamic waves in a compressible fluid conductor. nature, 165, 1020-1021(1950) [4] DUNGEY, J. W. The attenuation of Alfvén waves. Journal of Geophysical Research, 59, 323-328(1954) [5] COLEMAN, P. J. Hydromagnetic waves in the interplanetary plasma. Physical Review Letters, 17, 207-211(1966) [6] BELCHER, J. W. and DAVIS, L., JR. Large-amplitude Alfvén waves in the interplanetary medium, 2. Journal of Geophysical Research, 76, 3534-3563(1971) [7] EDWIN, P. M. and ROBERTS, B. Wave propagation in a magnetic cylinder. Solar Physics, 88, 179-191(1983) [8] GUREVICH, A., KRYLOV, L., and EI, G. Quasilongitudinal nonlinear dispersing MHD waves. Journal of Experimental and Theoretical Physics, 102, 1524-1539(1992) [9] WASHIMI, H. and TANIUTI, T. Propagation of ion-acoustic solitary waves of small amplitude. Physical Review Letters, 17, 996-998(1966) [10] MEURIS, P. and VERHEEST, F. Korteweg-de Vries equation for magnetosonic modes in dusty plasmas. Physics Letters A, 219, 299-302(1996) [11] HUSSAIN, S. and MAHMOOD, S. Korteweg-de Vries Burgers equation for magnetosonic wave in plasma. Physics of Plasmas, 18, 052308(2011) [12] IDA, A., SANUKI, H., and TODOROKI, J. An extended K-dV equation for nonlinear magnetosonic wave in a multi-ion plasma. Physica Scripta, 53, 85-88(1996) [13] MURAWSKI, K. Alfvén-magnetosonic waves interaction in the solar corona. Solar Physics, 139, 279-297(1992) [14] WANG, X. Y. and LIN, Y. Generation of nonlinear Alfvén and magnetosonic waves by beamplasma interaction. Physics of Plasmas, 10, 3528-3538(2003) [15] SHARMA, R. P., KUMAR, S., and SINGH, H. D. Nonlinear interaction of dispersive Alfvén waves and magnetosonic waves in space plasma. Physics of Plasmas, 16, 032901(2009) [16] LACOMBE, C. and MANGENEY, A. Nonlinear interaction of Alfvén waves with compressive fast magnetosonic waves. Astronomy and Astrophysics, 88, 277-281(1980) [17] PHILLIPS, O. M. On the dynamics of unsteady gravity waves of finite amplitude part 1, the elementary interactions. Journal of Fluid Mechanics, 9, 193-217(1960) [18] BENNEY, D. J. Non-linear gravity wave interactions. Journal of Fluid Mechanics, 14, 577-584(1962) [19] HAMMACK, J. L. and HENDERSON, D. M. Resonant interactions among surface water waves. Annual Review of Fluid Mechanics, 25, 55-97(1993) [20] LIAO, S. J. Homotopy Analysis Method in Nonlinear Differential Equations, Springer, Berlin, Heidelberg (2012) [21] WAZWAZ, A. M. The simplified Hirota's method for studying three extended higher-order KdVtype equations. Journal of Ocean Engineering and Science, 1(3), 181-185(2016) [22] JEFFREY, A. and KAKUTANI, T. Weak nonlinear dispersive waves:a discussion centered around the Korteweg-de Vries equation. SIAM Review, 14(4), 582-643(1972) [23] BRONSKI, J. C., HUR, V. M., and MATHEW, A. J. Modulational instability in equations of KdV type. New Approaches to Nonlinear Waves, Springer, Champion (2016) [24] TOBISCH, E. and PELINOVSKY, E. Conditions for modulation instability in higher order Korteweg-de Vries equations. Applied Mathematical Letters, 88, 28-32(2019) [25] XU, D. L., CUI, J. F., LIAO, S. J., and ALSAED, A. A HAM-based analytic approach for physical models with an infinite number of singularities. Numerical Algorithms, 69(1), 59-74(2015) [26] LIAO, S. J. An optimal homotopy-analysis approach for strongly nonlinear differential equations. Communications in Nonlinear Science and Numerical Simulation, 15(8), 2003-2016(2010) |