[1] HAJJAJ, A. Z., ALFOSAIL, F. K., and YOUNIS, M. I. Two-to-one internal resonance of MEMS arch resonators. International Journal of Non-Linear Mechanics, 107, 64-72(2018) [2] TSENG, W. Y. and DUGUNDJI, J. Nonlinear vibrations of a buckled beam under harmonic excitation. Journal of Applied Mechanics, 38, 467-476(1971) [3] ABOU-RAYAN, A. M., NAYFEH, A. H., MOOK, D. T., and NAYFEH, M. A. Nonlinear response of a parametrically excited buckled beam. Nonlinear Dynamics, 4, 499-525(1993) [4] IBRAHIM, S. M., PATEL, B. P., and NATH, Y. Modified shooting approach to the non-linear periodic forced response of isotropic/composite curved beams. International Journal of Non-Linear Mechanics, 44, 1073-1084(2009) [5] DING, H., ZHU, M. H., and CHEN, L. Q. Nonlinear vibration isolation of a viscoelastic beam. Nonlinear Dynamics, 92, 325-349(2018) [6] FRATERNALI, F., SPADEA, S., and ASCIONE, L. Buckling behavior of curved composite beams with different elastic response in tension and compression. Composite Structures, 100, 280-289(2013) [7] HUANG, J. L., SU, R. K. L., LEE, Y. Y., and CHEN, S. H. Nonlinear vibration of a curved beam under uniform base harmonic excitation with quadratic and cubic nonlinearities. Journal of Sound and Vibration, 330, 5151-5164(2011) [8] WANG, B. Asymptotic analysis on weakly forced vibration of axially moving viscoelastic beam constituted by standard linear solid model. Applied Mathematics and Mechanics (English Edition), 33(6), 817-828(2012) https://doi.org/10.1007/s10483-012-1588-8 [9] WANG, Y. B., DING, H., and CHEN, L. Q. Modeling and analysis of an axially acceleration beam based on a higher order beam theory. Meccanica, 53, 2525-2542(2018) [10] EMAM, S. A. and NAYFEH, A. H. On the nonlinear dynamics of a buckled beam subjected to a primary-resonance excitation. Nonlinear Dynamics, 35, 1-17(2004) [11] EMAM, S. A. and NAYFEH, A. H. Non-linear response of buckled beams to 1:1 and 3:1 internal resonances. International Journal of Non-Linear Mechanics, 52, 12-25(2013) [12] LEE, Y. Y., POON, W. Y., and NG, C. F. Anti-symmetric mode vibration of a curved beam subject to autoparametric excitation. Journal of Sound and Vibration, 290, 48-64(2006) [13] TIEN, W. M., NAMACHCHIVAYA, N. S., and BAJAJ, A. K. Non-linear dynamics of a shallow arch under periodic excitation-I:1:2 internal resonance. International Journal of Non-Linear Mechanics, 29, 349-366(1994) [14] TIEN, W. M., NAMACHCHIVAYA, N. S., and MALHOTRA, N. Non-linear dynamics of a shallow arch under periodic excitation-II:1:1 internal resonance. International Journal of Non-Linear Mechanics, 29, 367-386(1994) [15] ÖZ, H. R. and PAKDEMIRLI, M. Two-to-one internal resonances in a shallow curved beam resting on an elastic foundation. Acta Mechanica, 185, 245-260(2006) [16] HUANG, J. L., SU, R. K. L., LEE, Y. Y. R., and CHEN, S. H. Various bifurcation phenomena in a nonlinear curved beam subjected to base harmonic excitation. International Journal of Bifurcation and Chaos, 28, 1830023(2018) [17] XIONG, L. Y., ZHANG, G. C., DING, H., and CHEN, L. Q. Nonlinear forced vibration of a viscoelastic buckled beam with 2:1 internal resonance. Mathematical Problems in Engineering, 2014, 1-14(2014) [18] MAO, X. Y., DING, H., and CHEN, L. Q. Forced vibration of axially moving beam with internal resonance in the supercritical regime. International Journal of Mechanical Sciences, 131-132, 81-94(2017) [19] LI, F. M. and YAO, G. 1/3 subharmonic resonance of a nonlinear composite laminated cylindrical shell in subsonic air flow. Composite Structures, 100, 249-256(2013) [20] BAI, C. Q., ZHANG, H. Y., and XU, Q. Y. Subharmonic resonance of a symmetric ball bearingrotor system. International Journal of Non-Linear Mechanics, 50, 1-10(2013) [21] WU, F. J. and QU, L. S. Diagnosis of subharmonic faults of large rotating machinery based on EMD. Mechanical Systems and Signal Processing, 23, 467-475(2009) [22] YANG, J. H., SANJUÁN, M. A. F., and LIU, H. G. Vibrational subharmonic and super harmonic resonances. Communications in Nonlinear Science & Numerical Simulations, 30, 362-372(2016) [23] MAO, X. Y., DING, H., LIM, C. W., and CHEN, L. Q. Super-harmonic resonance and multifrequency responses of a super-critical translating beam. Journal of Sound and Vibration, 385, 267-283(2016) [24] EMAM, S. A. and NAYFEH, A. H. Nonlinear responses of buckled beams to subharmonic resonance excitations. Nonlinear Dynamics, 35, 105-122(2004) [25] EMAM, S. A. A Theoretical and Experimental Study of Nonlinear Dynamics of Buckled Beams, Ph. D. dissertation, Faculty of the Virginia Polytechnic Institute and State University, Virginia, 14-21(2002) [26] NAYFEH, A. H., KREIDER, W., and ANDERSON, T. J. Investigation of natural frequencies and mode shapes of buckled beams. AIAA Journal, 33, 1121-1126(1995) [27] LAU, S. L. and CHEUNG, Y. K. Amplitude incremental variational principle for nonlinear vibration of elastic systems. Journal of Applied Mechanics, 48, 959-964(1981) [28] CHEUNG, Y. K. and LAU, S. L. Incremental time-space finite strip method for non-linear structural vibrations. Earthquake Engineering & Structural Dynamics, 10, 239-253(1982) [29] NAYFEH, A. H. and BALACHANDRAN, B. Applied Nonlinear Dynamics, Wiley, New York, 187-205(1995) [30] IBRAHIM, S. M., PATEL, B. P., and NATH, Y. Nonlinear periodic response of composite curved beam subjected to symmetric and antisymmetric mode excitation. Journal of Computational and Nonlinear Dynamics, 5, 021009(2010) [31] PATEL, B. P., IBRAHIM, S. M., and NATH, Y. On the internal resonance characteristics of curved beams. Journal of Vibration and Control, 22, 2400-2405(2016) |