Applied Mathematics and Mechanics (English Edition) ›› 2022, Vol. 43 ›› Issue (6): 793-812.doi: https://doi.org/10.1007/s10483-022-2853-9
• Articles • Previous Articles Next Articles
Yaode YIN, Demin ZHAO, Jianlin LIU, Zengyao XU
Received:
2021-12-27
Revised:
2022-04-08
Online:
2022-06-01
Published:
2022-06-11
Contact:
Demin ZHAO, E-mail:zhaodemin@upc.edu.cn
Supported by:
2010 MSC Number:
Yaode YIN, Demin ZHAO, Jianlin LIU, Zengyao XU. Nonlinear dynamic analysis of dielectric elastomer membrane with electrostriction. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 793-812.
[1] PELRINE, R., KORNBLUH, R., PEI, Q., and JOSEPH, J. High-speed electrically actuated elastomers with strain greater than 100%. Science, 287(5454), 836-839(2000) [2] AN, L., WANG, F., CHENG, S., LU, T., and WANG, T. J. Experimental investigation of the electromechanical phase transition in a dielectric elastomer tube. Smart Materials and Structures, 24(3), 035006(2015) [3] GUO, Y., LIU, L., LIU, Y., and LENG, J. Review of dielectric elastomer actuators and their applications in soft robots. Advanced Intelligent Systems, 3(10), 2000282(2021) [4] LAI, Z., WANG, S., ZHU, L., ZHANG, G., WANG, J., YANG, K., and YURCHENKO, D. A hybrid piezo-dielectric wind energy harvester for high-performance vortex-induced vibration energy harvesting. Mechanical Systems and Signal Processing, 150, 107212(2021) [5] SUO, Z. Theory of dielectric elastomers. Acta Mechanica Solida Sinica, 23(6), 549-578(2010) [6] FOX, J. W. and GOULBOURNE, N. C. On the dynamic electromechanical loading of dielectric elastomer membranes. Journal of the Mechanics and Physics of Solids, 56(8), 2669-2686(2008) [7] GU, G. Y., GUPTA, U., ZHU, J., ZHU, L. M., and ZHU, X. Modeling of viscoelastic electromechanical behavior in a soft dielectric elastomer actuator. IEEE Transactions on Robotics, 33(5), 1263-1271(2017) [8] LI, G., CHEN, X., ZHOU, F., LIANG, Y., XIAO, Y., CAO, X., ZHANG, Z., ZHANG, M., WU, B., YIN, S., XU, Y., FAN, H., CHEN, Z., SONG, W., YANG, W., PAN, B., HOU, J., ZOU, W., HE, S., YANG, X., MAO, G., JIA, Z., ZHOU, H., LI, T., QU, S., XU, Z., HUANG, Z., LUO, Y.,XIE, T., GU, J., ZHU, S., and YANG, W. Self-powered soft robot in the Mariana Trench. nature, 591(7848), 66-71(2021) [9] GARNELL, E., ROUBY, C., and DOAR, O. Dynamics and sound radiation of a dielectric elastomer membrane. Journal of Sound and Vibration, 459, 114836(2019) [10] LINNEBACH, P., RIZZELLO, G., and SEELECKE, S. Design and validation of a dielectric elastomer membrane actuator driven pneumatic pump. Smart Materials and Structures, 29(7), 075021(2020) [11] DAI, H. and WANG, L. Nonlinear oscillations of a dielectric elastomer membrane subjected to in-plane stretching. Nonlinear Dynamics, 82(4), 1709-1719(2015) [12] GOULBOURNE, N., MOCKENSTURM, E., and FRECKER, M. A nonlinear model for dielectric elastomer membranes. Journal of Applied Mechanics, 72(6), 899-906(2005) [13] SUO, Z., ZHAO, X., and GREENE, W. H. A nonlinear field theory of deformable dielectrics. Journal of the Mechanics and Physics of Solids, 56(2), 467-486(2008) [14] DORFMANN, A. and OGDEN, R. W. Nonlinear electroelasticity. Acta Mechanica, 174(3), 167-183(2005) [15] ZHAO, X. and SUO, Z. Electrostriction in elastic dielectrics undergoing large deformation. Journal of Applied Physics, 104(12), 123530(2008) [16] ASK, A., MENZEL, A., and RISTINMAA, M. Electrostriction in electro-viscoelastic polymers. Mechanics of Materials, 50, 9-21(2012) [17] ASK, A., MENZEL, A., and RISTINMAA, M. Modelling of viscoelastic dielectric elastomers with deformation dependent electric properties. Procedia IUTAM, 12, 134-144(2015) [18] GEI, M., COLONNELLI, S., and SPRINGHETTI, R. The role of electrostriction on the stability of dielectric elastomer actuators. International Journal of Solids and Structures, 51(3), 848-860(2014) [19] LI, B., CHEN, H., and ZHOU, J. Electromechanical stability of dielectric elastomer composites with enhanced permittivity. Composites Part A:Applied Science and Manufacturing, 52, 55-61(2013) [20] KUMAR, A. and PATRA, K. Proposal of a generic constitutive model for deformation-dependent dielectric constant of dielectric elastomers. Engineering Science and Technology, an International Journal, 24(6), 1347-1360(2021) [21] FOO, C. C., CAI, S. Q., KOH, S. J. A., BAUER, S., and SUO, Z. G. Model of dissipative dielectric elastomers. Journal of Applied Physics, 111(3), 034102(2012) [22] LU, T., MA, C., and WANG, T. Mechanics of dielectric elastomer structures:a review. Extreme Mechanics Letters, 38, 100752(2020) [23] WANG, F., LU, T., and WANG, T. J. Nonlinear vibration of dielectric elastomer incorporating strain stiffening. International Journal of Solids and Structures, 87, 70-80(2016) [24] ZHAO, X., KOH, S. J. A., and SUO, Z. Nonequilibrium thermodynamics of dielectric elastomers. International Journal of Applied Mechanics, 3(2), 203-217(2011) [25] WANG, Z. and HE, T. Electro-viscoelastic behaviors of circular dielectric elastomer membrane actuator containing concentric rigid inclusion. Applied Mathematics and Mechanics (English Edition), 39(4), 547-560(2018) https://doi.org/10.1007/s10483-018-2318-8 [26] ZHANG, J., CHEN, H., and LI, D. Nonlinear dynamical model of a soft viscoelastic dielectric elastomer. Physical Review Applied, 8(6), 064016(2017) [27] ZHAO, D., YIN, Y., and LIU, J. A fractional finite strain viscoelastic model of dielectric elastomer. Applied Mathematical Modelling, 100, 564-579(2021) [28] ZHU, J., CAI, S., and SUO, Z. Resonant behavior of a membrane of a dielectric elastomer. International Journal of Solids and Structures, 47(24), 3254-3262(2010) [29] ZHANG, J. and CHEN, H. Voltage-induced beating vibration of a dielectric elastomer membrane. Nonlinear Dynamics, 100(3), 2225-2239(2020) [30] SHARMA, A. K., ARORA, N., and JOGLEKAR, M. M. DC dynamic pull-in instability of a dielectric elastomer balloon:an energy-based approach. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 474(2211), 20170900(2018) [31] HEIDARI, H., ALIBAKHSHI, A., and AZARBONI, H. R. Chaotic motion of a parametrically excited dielectric elastomer. International Journal of Applied Mechanics, 12(3), 2050033(2020) [32] CHEN, F., ZHU, J., and WANG, M. Y. Dynamic electromechanical instability of a dielectric elastomer balloon. Europhysics Letters, 112(4), 47003(2015) [33] LV, X., LIU, L., LIU, Y., and LENG, J. Dynamic performance of dielectric elastomer balloon incorporating stiffening and damping effect. Smart Materials and Structures, 27(10), 105036(2018) [34] KHURANA, A., KUMAR, A., SHARMA, A. K., and JOGLEKAR, M. M. Effect of polymer chains entanglements, crosslinks and finite extensibility on the nonlinear dynamic oscillations of dielectric viscoelastomer actuators. Nonlinear Dynamics, 104(2), 1227-1251(2021) [35] JOGLEKAR, M. M. An energy-based approach to extract the dynamic instability parameters of dielectric elastomer actuators. Journal of Applied Mechanics, 81(9), 091010(2014) [36] ZHU, J., CAI, S., and SUO, Z. Nonlinear oscillation of a dielectric elastomer balloon. Polymer International, 59(3), 378-383(2010) [37] ALIBAKHSHI, A. and HEIDARI, H. Analytical approximation solutions of a dielectric elastomer balloon using the multiple scales method. European Journal of Mechanics-A/Solids, 74, 485-496(2019) [38] WANG, Y., ZHANG, L., and ZHOU, J. Incremental harmonic balance method for periodic forced oscillation of a dielectric elastomer balloon. Applied Mathematics and Mechanics (English Edition), 41(3), 459-470(2020) https://doi.org/10.1007/s10483-020-2590-7 [39] TANG, D., LIM, C. W., HONG, L., JIANG, J., and LAI, S. K. Analytical asymptotic approximations for large amplitude nonlinear free vibration of a dielectric elastomer balloon. Nonlinear Dynamics, 88(3), 2255-2264(2017) [40] LIU, F. and ZHOU, J. Shooting and arc-length continuation method for periodic solution and bifurcation of nonlinear oscillation of viscoelastic dielectric elastomers. Journal of Applied Mechanics, 85(1), 011005(2017) [41] FRIED, E. An elementary molecular-statistical basis for the Mooney and Rivlin-Saunders theories of rubber elasticity. Journal of the Mechanics and Physics of Solids, 50(3), 571-582(2002) [42] HOSSAIN, M., VU, D. K., and STEINMANN, P. Experimental study and numerical modelling of VHB 4910 polymer. Computational Materials Science, 59, 65-74(2012) [43] NAYFEH, A. H. and MOOK, D. T. Nonlinear Oscillations, John Wiley & Sons, New York (2008) [44] KEPLINGER, C., LI, T., BAUMGARTNER, R., SUO, Z., and BAUER, S. Harnessing snapthrough instability in soft dielectrics to achieve giant voltage-triggered deformation. Soft Matter, 8(2), 285-288(2012) [45] LI, T., KEPLINGER, C., BAUMGARTNER, R., BAUER, S., YANG, W., and SUO, Z. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 61(2), 611-628(2013) [46] LI, Z., WANG, Y., FOO, C. C., GODABA, H., ZHU, J., and YAP, C. H. The mechanism for large-volume fluid pumping via reversible snap-through of dielectric elastomer. Journal of Applied Physics, 122(8), 084503(2017) |
[1] | Runqing CAO, Zilong GUO, Wei CHEN, Huliang DAI, Lin WANG. Nonlinear dynamics of a circular curved cantilevered pipe conveying pulsating fluid based on the geometrically exact model [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(2): 261-276. |
[2] | Zhimin CHEN, W. G. PRICE. Secondary steady-state and time-periodic flows from a basic flow with square array of odd number of vortices [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 447-458. |
[3] | Peng WANG, Shaopu YANG, Yongqiang LIU, Pengfei LIU, Xing ZHANG, Yiwei ZHAO. Research on hunting stability and bifurcation characteristics of nonlinear stochastic wheelset system [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(3): 431-446. |
[4] | Lele WANG, Liang WANG, Yueting ZHU, Zhanli LIU, Yongtao SUN, Jie WANG, Hongge HAN, Shuyi XIANG, Huibin SHI, Qian DING. Nonlinear dynamic response and stability analysis of the stapes reconstruction in human middle ear [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(10): 1739-1760. |
[5] | A. MOSLEMI, M. R. HOMAEINEZHAD. Effects of viscoelasticity on the stability and bifurcations of nonlinear energy sinks [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(1): 141-158. |
[6] | Lei LI, Hanbiao LIU, Jianxin HAN, Wenming ZHANG. Nonlinear modal coupling in a T-shaped piezoelectric resonator induced by stiffness hardening effect [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 777-792. |
[7] | Duquan ZUO, B. SAFAEI, S. SAHMANI, Guoling MA. Nonlinear free vibrations of porous composite microplates incorporating various microstructural-dependent strain gradient tensors [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 825-844. |
[8] | K. DEVARAJAN, B. SANTHOSH. Nonlinear dynamics and performance analysis of modified snap-through vibration energy harvester with time-varying potential function [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(2): 185-202. |
[9] | Lei XIA, Jiaojiao SUN, Zuguang YING, Ronghua HUAN, Weiqiu ZHU. Dynamics and response reshaping of nonlinear predator-prey system undergoing random abrupt disturbances [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(8): 1123-1134. |
[10] | Kun ZHOU, Qiao NI, Wei CHEN, Huliang DAI, Zerui PENG, Lin WANG. New insight into the stability and dynamics of fluid-conveying supported pipes with small geometric imperfections [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(5): 703-720. |
[11] | Mengjiao HUA, Yu WU. Bifurcation in most probable phase portraits for a bistable kinetic model with coupling Gaussian and non-Gaussian noises [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(12): 1759-1770. |
[12] | Peng ZHOU. Coupling effects between elastic and electromagnetic fields from the perspective of conservation of energy [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1649-1662. |
[13] | A. SARAFRAZ, S. SAHMANI, M. M. AGHDAM. Nonlinear primary resonance analysis of nanoshells including vibrational mode interactions based on the surface elasticity theory [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(2): 233-260. |
[14] | Junda LI, Jianliang HUANG. Subharmonic resonance of a clamped-clamped buckled beam with 1:1 internal resonance under base harmonic excitations [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1881-1896. |
[15] | Li MA, Minghui YAO, Wei ZHANG, Dongxing CAO. Bifurcation and dynamic behavior analysis of a rotating cantilever plate in subsonic airflow [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(12): 1861-1880. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||