[1] KUMAR, V., BOLEY, J. W., YANG, Y. S., EKOWALUYO, H., MILLER, J. K., CHIU, G. T. C., and RHOADS, J. F. Bifurcation-based mass sensing using piezoelectrically-actuated microcantilevers. Applied Physics Letters, 98, 153510(2011) [2] YOUNIS, M. I. and ALSALEEM, F. Exploration of new concepts for mass detection in electrostatically-actuated structures based on nonlinear phenomena. Journal of Computational and Nonlinear Dynamics, 4, 21010(2009) [3] WANG, Y., ZHAO, C., WANG, C., CERICA, D., BAIJOT, M., XIAO, Q., STOUKATCH, S., and KRAFT, M. A mass sensor based on 3-DOF mode localized coupled resonator under atmospheric pressure. Sensors and Actuators A-Physical, 279, 254-262(2018) [4] ALGHAMDI, M., KHATER, M., STEWART, K. M. E., ALNEAMY, A., ABDEL-RAHMAN, E. M., and PENLIDIS, A. Dynamic bifurcation MEMS gas sensors. Journal of Micromechanics and Microengineering, 29, 015005(2019) [5] NAJAR, F., GHOMMEM, M., and ABDEL-RAHMAN, E. M. Arch microbeam bifurcation gas sensors. Nonlinear Dynamics, 104, 1-18(2021) [6] LEUS, V. and ELATA, D. On the dynamic response of electrostatic MEMS switches. Journal of Microelectromechanical Systems, 17, 236-243(2008) [7] HASAN, M. H., ALSALEEM, F. M., and OUAKAD, H. M. Novel threshold pressure sensors based on nonlinear dynamics of MEMS resonators. Journal of Micromechanics and Microengineering, 28, 065007(2018) [8] ZOU, H. X., ZHANG, W. M., LI, W. B., HU, K. M., WEI, K. X., PENG, Z. K., and MENG, G. A broadband compressive-mode vibration energy harvester enhanced by magnetic force intervention approach. Applied Physics Letters, 110, 163904(2017) [9] XIE, Z. Q., HUANG, B. R., FAN, K. Q., ZHOU, S. X., and HUANG, W. B. A magnetically coupled nonlinear T-shaped piezoelectric energy harvester with internal resonance. Smart Materials and Structures, 28, 11LT01(2019) [10] HAJJAJ, A. Z., JABER, N., HAFIZ, M. A. A., ILYAS, S., and YOUNIS, M. I. Multiple internal resonances in MEMS arch resonators. Physics Letters A, 384, 3393-3398(2018) [11] ALKADDOUR, M., GHOMMEM, M., and NAJAR, F. Nonlinear analysis and effectiveness of weakly coupled microbeams for mass sensing applications. Nonlinear Dynamics, 104, 1-15(2021) [12] ELSHURAFA, A. M., KHIRALLAH, K., TAWFIK, H. H., EMIRA, A., ABDEL-AZIZ, A. K. S., and SEDKY, S. M. Nonlinear dynamics of spring softening and hardening in folded-MEMS comb drive resonators. Journal of Microelectromechanical Systems, 20, 943-958(2011) [13] HAJJAJ, A. Z., JABER, N., ILYAS, S., ALFOSAIL, F., and YOUNIS, M. I. Linear and nonlinear dynamics of micro and nano-resonators:review of recent advances. International Journal of NonLinear Mechanics, 119, 103328(2019) [14] WANG, X., XIAO, D. B., ZHOU, Z. L., CHEN, Z. H., WU, X. Z., and LI, S. Y. Support loss for beam undergoing coupled vibration of bending and torsion in rocking mass resonator. Sensors and Actuators A-Physical, 171, 199-206(2011) [15] XIE, Z. Q., WANG, T., KWUIMY, C. A. K., SHAO, Y., and HUANG, W. B. Design, analysis and experimental study of a T-shaped piezoelectric energy harvester with internal resonance. Smart Materials and Structures, 28, 085027(2019) [16] LABADZE, G., DUKALSKI, M., and BLANTER, Y. M. Dynamics of coupled vibration modes in a quantum non-linear mechanical resonator. Physica E:Low-Dimensional Systems and Nanostructures, 76, 181-186(2016) [17] SIEVERS, A. J. and TAKENO, S. Intrinsic localized modes in anharmonic crystals. Physical Review Letters, 61, 970-973(1988) [18] MATHENY, M. H., GRAU, M., VILLANUEVA, L. G., KARABALIN, R. B., CROSS, M. C., and ROUKES, M. L. Phase synchronization of two anharmonic nanomechanical oscillators. Physical Review Letters, 112, 014101(2014) [19] SANSA, M., SAGE, E., BULLARD, E. C., GÉLY, M., ALAVA, T., COLINET, E., NAIK, A. K., VILLANUEVA, L. G., DURAFFOURG, L., ROUKES, M. L., JOURDAN, G., and HENTZ, S. Frequency fluctuations in silicon nanoresonators. Nature Nanotechnology, 11, 552-558(2016) [20] ZHANG, T. Y., REN, J., WEI, X. Y., JIANG, Z. D., and HUAN, R. H. Nonlinear coupling of flexural mode and extensional bulk mode in micromechanical resonators. Applied Physics Letters, 109, 22410(2016) [21] LI, L., LIU, H. B., SHAO, M. Y., and MA, C. C. A novel frequency stabilization approach for mass detection in nonlinear mechanically coupled resonant sensors. Micromachines, 12, 178(2021) [22] XIA, C., WANG, D. F., ONO, T., ITOH, T., and MAEDA, R. A mass multi-warning scheme based on one-to-three internal resonance. Mechanical Systems and Signal Processing, 142, 106784(2020) [23] WANG, X. F., WEI, X. Y., PU, D., and HUAN, R. H. Single-electron detection utilizing coupled nonlinear microresonators. Microsystems & Nanoengineering, 6, 327-333(2020) [24] ILYAS, S., CHAPPANDA, K., and YOUNIS, M. I. Exploiting nonlinearities of micro-machined resonators for filtering applications. Applied Physics Letters, 110, 1-4(2017) [25] ATABAK, S., BEHRAAD, B., and FARID, G. Analytical modeling and experimental verification of nonlinear mode coupling in a decoupled tuning fork microresonator. Journal of Microelectromechanical Systems, 3, 1-9(2018) [26] RAMINI, A. H., HAJJAJ, A. Z., and YOUNIS, M. I. Tunable resonators for nonlinear modal interactions. Scientific Reports, 6, 34717(2016) [27] KILINC, Y., KARAKAN, M. A., LEBLEBICI, Y., HANAY, M. S., and ALACA, B. E. Observation of coupled mechanical resonance modes within suspended 3D nanowire arrays. Nanoscale, 12, 22042(2020) [28] LI, L., ZHANG, Q. C., WANG, W., and HAN, J. X. Nonlinear coupled vibration of electrostatically actuated clamped-clamped microbeams under higher-order modes excitation. Nonlinear Dynamics, 90, 1593-1606(2017) [29] BAGUET, S., NGUYEN, V. N., GRENAT, C., LAMARQUE, C. H., and DUFOUR, R. Nonlinear dynamics of micromechanical resonator arrays for mass sensing. Nonlinear Dynamics, 95, 1203-1220(2019) [30] XIA, C., WANG, D. F., ONO, T., ITOH, T., and ESASHI, M. Internal resonance in coupled oscillators, Part I:a double amplification mass sensing scheme without Duffing nonlinearity. Mechanical Systems and Signal Processing, 159, 107886(2021) [31] LIU, Y. F., QIN, Z. Y., and CHU, F. L. Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance. Applied Mathematics and Mechanics (English Edition), 42(6), 805-818(2021) https://doi.org/10.1007/s10483-021-2740-7 [32] LI, L., HAN, J. X., ZHANG, Q. C., LIU, C., and GUO, Z. Nonlinear dynamics and parameter identification of electrostatically coupled resonators. International Journal of Non-Linear Mechanics, 110, 104-114(2019) [33] VYAS, A., PEROULIS, D., and BAJAJ, A. K. A microresonator design based on nonlinear 1:2 internal resonance in flexural structural modes. Journal of Microelectromechanical Systems, 18, 744-762(2009) [34] WU, Y. P., JI, H. L., QIU, J. H., and HAN, L. A 2-degree-of-freedom cubic nonlinear piezoelectric harvester intended for practical low-frequency vibration. Sensors and Actuators A-Physical, 264, 1-10(2017) [35] YAN, Z., TAHA, H. E., and TAN, T. Nonlinear characteristics of an autoparametric vibration system. Journal of Sound and Vibration, 390, 1-22(2017) [36] YOUNIS, M. I., ABDEL-RAHMAN, E. M., and NAYFEH, A. A reduced-order model for electrically actuated microbeam-based MEMS. Journal of Microelectromechanical Systems, 12, 672-680(2003) [37] YU, T. J., Zhang, W., and YANG, X. D., Nonlinear dynamics of flexible L-shaped beam based on exact modes truncation. International Journal of Bifurcation and Chaos, 27, 1750035(2017) |