[1] TRIVEDI, D., RAHN, C. D., KIER, W. M., and WALKER, I. D. Soft robotics:biological inspiration, state of the art, and future research. Applied Bionics and Biomechanics, 5(3), 99-117(2008) [2] RUS, D. and TOLLEY, M. T. Design, fabrication and control of soft robots. nature, 521(7553), 467-475(2015) [3] LASCHI, C., MAZZOLAI, B., and CIANCHETTI, M. Soft robotics:technologies and systems pushing the boundaries of robot abilities. Science Robotics, 1(1), eaah3690(2016) [4] HINES, L., PETERSEN, K., LUM, G. Z., and SITTI, M. Soft actuators for small-scale robotics. Advanced Materials, 29(13), 1603483(2017) [5] COYLE, S., MAJIDI, C., LEDUC, P., and HSIA, K. J. Bio-inspired soft robotics:material selection, actuation, and design. Extreme Mechanics Letters, 22, 51-59(2018) [6] WHITESIDES, G. M. Soft robotics. Angewandte Chemie, 57(16), 4258-4273(2018) [7] ZHAO, H., O'BRIEN, K., LI, S., and SHEPHERD, R. F. Optoelectronically innervated soft prosthetic hand via stretchable optical waveguides. Science Robotics, 1(1), eaai7529(2016) [8] MAJIDI, C. Soft robotics:a perspective-current trends and prospects for the future. Soft Robotics, 1(1), 5-11(2014) [9] BHAGAT, S., BANERJEE, H., TSE, Z., and REN, H. L. Deep reinforcement learning for soft, flexible robots:brief review with impending challenges. Robotics, 8(1), 4(2019) [10] AKIN, H. L., ITO, N., JACOFF, A., KLEINER, A., PELLENZ, J., and VISSER, A. J. A. M. Robocup rescue robot and simulation leagues. AI Magazine, 34(1), 78(2013) [11] CHEN, F., LIU, K., WANG, Y., ZOU, J., GU, G., and ZHU, X. Automatic design of soft dielectric elastomer actuators with optimal spatial electric fields. IEEE Transactions on Robotics, 35(5), 1150-1165(2019) [12] HAGHIASHTIANI, G., HABTOUR, E., PARK, S. H., GARDEA, F., and MCALPINE, M. C. 3D printed electrically-driven soft actuators. Extreme Mechanics Letters, 21, 1-8(2018) [13] DIAHAM, S., ZELMAT, S., LOCATELLI, M. L., DINCULESCU, S., DECUP, M., LEBEY, T. J. I. T. O. D., and INSULATION, E. Dielectric breakdown of polyimide films:area, thickness and temperature dependence. IEEE Transactions on Dielectrics and Electrical Insulation, 17(1), 18-27(2010) [14] LENDLEIN, A. Fabrication of reprogrammable shape-memory polymer actuators for robotics. Science Robotics, 3(18), eaat9090(2018) [15] WESTBROOK, K. K., MATHER, P. T., PARAKH, V., DUNN, M. L., GE, Q., LEE, B. M., and QI, H. J. Two-way reversible shape memory effects in a free-standing polymer composite. Smart Materials and Structures, 20(6), 065010(2011) [16] MENG, H. and LI, G. A review of stimuli-responsive shape memory polymer composites. Polymer, 54(9), 2199-2221(2013) [17] YANG, H., LEOW, W. R., WANG, T., WANG, J., YU, J., HE, K., QI, D., WAN, C., and CHEN, X. 3D printed photoresponsive devices based on shape memory composites. Advanced Materials, 29(33), 1701627(2017) [18] MARTINEZ, R. V., FISH, C. R., CHEN, X., and WHITESIDES, G. M. Elastomeric origami:programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 22(7), 1376-1384(2012) [19] GORISSEN, B., CHISHIRO, T., SHIMOMURA, S., REYNAERTS, D., DE VOLDER, M., and KONISHI, S. Flexible pneumatic twisting actuators and their application to tilting micromirrors. Sensors and Actuators A:Physical, 216, 426-431(2014) [20] MORIN, S. A., KWOK, S. W., LESSING, J., TING, J., SHEPHERD, R. F., STOKES, A. A., and WHITESIDES, G. M. Elastomeric tiles for the fabrication of inflatable structures. Advanced Functional Materials, 24(35), 5541-5549(2014) [21] MOSADEGH, B., POLYGERINOS, P., KEPLINGER, C., WENNSTEDT, S., SHEPHERD, R. F., GUPTA, U., SHIM, J., BERTOLDI, K., WALSH, C. J., and WHITESIDES, G. M. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 24(15), 2163-2170(2014) [22] ROCHE, E. T., WOHLFARTH, R., OVERVELDE, J. T., VASILYEV, N. V., PIGULA, F. A., MOONEY, D. J., BERTOLDI, K., and WALSH, C. J. A bioinspired soft actuated material. Advanced Materials, 26(8), 1200-1206(2014) [23] YUK, H., LIN, S., MA, C., TAKAFFOLI, M., FANG, N. X., and ZHAO, X. Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water. Nature Communications, 8(1), 14230(2017) [24] CONNOLLY, F., POLYGERINOS, P., WALSH, C. J., and BERTOLDI, K. Mechanical programming of soft actuators by varying fiber angle. Soft Robotics, 2(1), 26-32(2015) [25] CONNOLLY, F., WALSH, C. J., and BERTOLDI, K. Automatic design of fiber-reinforced soft actuators for trajectory matching. Proceedings of the National Academy of Sciences of the United States of America, 114(1), 51-56(2017) [26] KIM, S. Y., BAINES, R., BOOTH, J., VASIOS, N., BERTOLDI, K., and KRAMERBOTTIGLIO, R. Reconfigurable soft body trajectories using unidirectionally stretchable composite laminae. Nature Communications, 10(1), 3464(2019) [27] THRASHER, C. J., SCHWARTZ, J. J., and BOYDSTON, A. J. Modular elastomer photoresins for digital light processing additive manufacturing. ACS Applied Materials & Interfaces, 9(45), 39708-39716(2017) [28] WALLIN, T. J., PIKUL, J. H., BODKHE, S., PEELE, B. N., MAC MURRAY, B. C., THERRIAULT, D., MCENERNEY, B. W., DILLON, R. P., GIANNELIS, E. P., and SHEPHERD, R. F. Click chemistry stereolithography for soft robots that self-heal. Journal of Materials Chemistry B, 5(31), 6249-6255(2017) [29] WEHNER, M., TRUBY, R. L., FITZGERALD, D. J., MOSADEGH, B., WHITESIDES, G. M., LEWIS, J. A., and WOOD, R. J. An integrated design and fabrication strategy for entirely soft, autonomous robots. nature, 536(7617), 451-455(2016) [30] SCHAFFNER, M., FABER, J. A., PIANEGONDA, L., RUHS, P. A., COULTER, F., and STUDART, A. R. 3D printing of robotic soft actuators with programmable bioinspired architectures. Nature Communications, 9(1), 878(2018) [31] TRUBY, R. L., WEHNER, M., GROSSKOPF, A. K., VOGT, D. M., UZEL, S. G. M., WOOD, R. J., and LEWIS, J. A. Soft somatosensitive actuators via embedded 3D printing. Advanced Materials, 30(15), 1706383(2018) [32] PATEL, D. K., SAKHAEI, A. H., LAYANI, M., ZHANG, B., GE, Q., and MAGDASSI, S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Advanced Materials, 29(15), 1606000(2017) [33] GE, L., DONG, L., WANG, D., GE, Q., and GU, G. A digital light processing 3D printer for fast and high-precision fabrication of soft pneumatic actuators. Sensors and Actuators A:Physical, 273, 285-292(2018) [34] ZHANG, Y. F., NG, C. J. X., CHEN, Z., ZHANG, W., PANJWANI, S., KOWSARI, K., YANG, H. Y., and GE, Q. Miniature pneumatic actuators for soft robots by high-resolution multimaterial 3D printing. Advanced Materials Technologies, 4(10), 1900427(2019) [35] STEYRER, B., BUSETTI, B., GYRGY, H., LISKA, R., and STAMPFL, J. Hot lithography vs. room temperature DLP 3D-printing of a dimethacrylate. Additive Manufacturing, 21, 209-214(2018) [36] DICKEY, M. D., CHIECHI, R. C., LARSEN, R. J., WEISS, E. A., WEITZ, D. A., and WHITESIDES, G. M. Eutectic gallium-indium (egain):a liquid metal alloy for the formation of stable structures in microchannels at room temperature. Advanced Functional Materials, 18(7), 1097-1104(2008) [37] ZHANG, Q., ROACH, D. J., GENG, L., CHEN, H., QI, H. J., and FANG, D. Highly stretchable and conductive fibers enabled by liquid metal dip-coating. Smart Materials and Structures, 27(3), 035019(2018) [38] JONES, R. M. Mechanics of Composite Materials, 2nd ed., CRC Press, Philadelphia, 71-81(1998) |