[1] YU, D., FENG, J., and HONE, J. Elastically strained nanowires and atomic sheets. MRS Bulletin, 39(2), 157-162(2014) [2] EUARUKSAKUL, C., CHEN, F., TANTO, B., RITZ, C., PASKIEWICZ, D., HIMPSEL, F., SAVAGE, D., LIU, Z., YAO, Y., and LIU, F. Relationships between strain and band structure in Si (001) and Si (110) nanomembranes. Physical Review B, 80(11), 115323(2009) [3] ESCALANTE, J. M. Non-linear behavior of germanium electronic band structure under high strain. Computational Materials Science, 152, 223-227(2018) [4] HOAT, D., VU, T. V., OBEID, M. M., and JAPPOR, H. R. Tuning the electronic structure of 2D materials by strain and external electric field:case of GeI2 monolayer. Chemical Physics, 527, 110499(2019) [5] PENG, X., WEI, Q., and COPPLE, A. Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Physical Review B, 90(8), 085402(2014) [6] KRIPALANI, D. R., KISTANOV, A. A., CAI, Y., XUE, M., and ZHOU, K. Strain engineering of antimonene by a first-principles study:mechanical and electronic properties. Physical Review B, 98(8), 085410(2018) [7] PENG, X. and LOGAN, P. Electronic properties of strained Si/Ge core-shell nanowires. Applied Physics Letters, 96(14), 143119(2010) [8] CHEN, Y., LEI, Y., LI, Y., YU, Y., CAI, J., CHIU, M. H., RAO, R., GU, Y., WANG, C., and CHOI, W. Strain engineering and epitaxial stabilization of halide perovskites. nature, 577(7789), 209-215(2020) [9] SHU, Z. and CAI, Y. Substitutional doped GeSe:tunable oxidative states with strain engineering. Journal of Materials Chemistry C, 8(39), 13655-13667(2020) [10] WANG, X., XU, T., ZHANG, R., DE ANDRADE, M. J., KOKKADA, P., QIAN, D., ROY, S., BAUGHMAN, R. H., and LU, H. Modeling the compressive buckling strain as a function of the nanocomposite interphase thickness in a carbon nanotube sheet wrapped carbon fiber composite. Journal of Applied Mechanics, 86(10), 101007(2019) [11] WANG, Y., ZHANG, Q., WANG, T., HAN, W., and ZHOU, S. Improvement of electron transport in a ZnSe nanowire by in situ strain. Journal of Physics D:Applied Physics, 44(12), 125301(2011) [12] GUPTA, S., MAGYARI-KÖPE, B., NISHI, Y., and SARASWAT, K. C. Achieving direct band gap in germanium through integration of Sn alloying and external strain. Journal of Applied Physics, 113(7), 073707(2013) [13] QIAN, D. Electro-mechanical coupling wave propagating in a locally resonant piezoelectric/elastic phononic crystal nanobeam with surface effects. Applied Mathematics and Mechanics (English Edition), 41(3), 425-438(2020) https://doi.org/10.1007/s10483-020-2586-5 [14] CHEN, F., EUARUKSAKUL, C., LIU, Z., HIMPSEL, F., LIU, F., and LAGALLY, M. G. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes. Journal of Physics D:Applied Physics, 44(32), 325107(2011) [15] PENG, X., TANG, F., and LOGAN, P. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain. Journal of Physics:Condensed Matter, 23(11), 115502(2011) [16] SCALISE, E., HOUSSA, M., POURTOIS, G., AFANAS'EV, V., and STESMANS, A. Straininduced semiconductor to metal transition in the two-dimensional honeycomb structure of MoS2. Nano Research, 5(1), 43-48(2012) [17] ZHAO, P., WAN, Y., ZHANG, S., GAO, A., GUO, P., JIANG, Z., and ZHENG, J. Strain effects on the 2D van der Waals heterostructure C3B/C3N:a density functional theory and a tight-binding study. Physica Status Solidi-Rapid Research Letters, 14(5), 2000012(2020) [18] LUO, M., XU, Y., and SONG, Y. Band gap tuning of 1T-MoS2/SiC bilayers with normal strain:a density functional study. Optik, 135, 79-84(2017) [19] CHUANG, S. and CHANG, C. k·p method for strained wurtzite semiconductors. Physical Review B, 54(4), 2491-2504(1996) [20] WINKELNKEMPER, M., SCHLIWA, A., and BIMBERG, D. Interrelation of structural and electronic properties in InxGa1-xN/GaN quantum dots using an eight-band k·p model. Physical Review B, 74(15), 155322(2006) [21] DUGDALE, D., BRAND, S., and ABRAM, R. Direct calculation of k·p parameters for wurtzite AlN, GaN, and InN. Physical Review B, 61(19), 12933(2000) [22] KANE, E. O. Band structure of indium antimonide. Journal of Physics and Chemistry of Solids, 1(4), 249-261(1957) [23] LUTTINGER, J. M. and KOHN, W. Motion of electrons and holes in perturbed periodic fields. Physical Review, 97(4), 869-883(1955) [24] BIR, G. L. and PIKUS, G. E. Symmetry and Strain-Induced Effects in Semiconductors, Wiley, New York (1974) [25] STIER, O., GRUNDMANN, M., and BIMBERG, D. Electronic and optical properties of strained quantum dots modeled by 8-band k·p theory. Physical Review B, 59(8), 5688(1999) [26] PARK, S. H. and CHUANG, S. L. Crystal-orientation effects on the piezoelectric field and electronic properties of strained wurtzite semiconductors. Physical Review B, 59(7), 4725-4737(1999) [27] HU, Y., ZHANG, Y., CHANG, Y., SNYDER, R. L., and WANG, Z. L. Optimizing the power output of a ZnO photocell by piezopotential. ACS Nano, 4(7), 4220-4224(2010) [28] SUN, K. and ZHANG, F. Piezoelectricity (volume one) (in Chinese), National Defense Industry Press, Beijing, 134(1984) [29] SZE, S. M. and NG, K. K. Physics of Semiconductor Devices, John Wiley and Sons, New York, 62(2006) [30] AULD, B. A. Acoustic Fields and Waves in Solids, John Wiley and Sons, New York, 370(1973) [31] OHTOMO, A., KAWASAKI, M., OHKUBO, I., KOINUMA, H., YASUDA, T., and SEGAWA, Y. Structure and optical properties of ZnO/Mg0.2Zn0.8O superlattices. Applied Physics Letters, 75(7), 980-982(1999) [32] HANADA, T. Basic Properties of ZnO, GaN, and Related Materials; Oxide and Nitride Semiconductors, Springer, New York, 1-19(2009) [33] SHTEPLIUK, I., KHRANOVSKYY, V., and YAKIMOVA, R. Effect of c-axis inclination angle on the properties of ZnO/Zn1-xCdxO/ZnO quantum wells. Thin Solid Films, 603, 139-148(2016) [34] FAN, S., HU, Y., and YANG, J. Stress-induced potential barriers and charge distributions in a piezoelectric semiconductor nanofiber. Applied Mathematics and Mechanics (English Edition), 40(5), 591-600(2019) https://doi.org/10.1007/s10483-019-2481-6 [35] YANG, W., HU, Y., and PAN, E. Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading. Nano Energy, 66, 104147(2019) |