[1] CHOI, S. U. S. and EASTMAN, J. A. Enhancing thermal conductivity of fluids with nanoparticles. Conference:International Mechanical Engineering Congress and Exhibition, San Francisco, CA (1995) [2] BUONGIORNO, J. Convective transport in nanofluids. Journal of Heat Transfer, 128, 240-250(2006) [3] TURKYILMAZOGLU, M. Fully developed slip flow in a concentric annuli via single and dual phase nanofluids models. Computer Methods and Programs in Biomedicine, 179, 104997(2019) [4] KHAN, M., Ahmed, J., Sultana, F., and SARFRAZ, M. Non-axisymmetric Homann MHD stagnation point flow of Al2O3-Cu/water hybrid nanofluid with shape factor impact. Applied Mathematics and Mechanics (English Edition), 41(5), 1125-1138(2020) https://doi.org/10.1007/s10483-020-2611-5 [5] JAFARIMOGHADDAM, A., TURKYILMAZOGLU, M., ROSCA, A. V., and POP, I. Complete theory of the elastic wall jet:a new flow geometry with revisited two-phase nanofluids. European Journal of Mechanics-B/Fluids, 86, 25-36(2021) [6] TURKYILMAZOGLU, M. Nanoliquid film flow due to a moving substrate and heat transfer. The European Physical Journal Plus, 135, 781(2020) [7] RAMESH, G. K., PRASANNAKUMARA, B. C., GIREESHA, B. J., and RASHIDI, M. M. Casson fluid flow near the stagnation point over a stretching sheet with variable thickness and radiation. Journal of Applied Fluid Mechanics, 9, 1115-1022(2016) [8] ALI, L., LIU, X., ALI, B., MUJEED, S., and ABDAL, S. Finite element analysis of thermo-diffusion and multi-slip effects on MHD unsteady flow of Casson nano-fluid over a shrinking/stretching sheet with radiation and heat source. Applied Sciences, 9, 5217(2019) [9] IBRAHIM, W. and ANBESSA, T. Three-dimensional MHD mixed convection flow of Casson nanofluid with hall and ion slip effects. Mathematical Problems in Engineering, 2020, 8656147(2020) [10] KUMAR, R. N., GOWDA, R. J. P., MADHUKESH, J. K., PRASANNAKUMARA, B. C., and RAMESH, G. K. Impact of thermophoretic particle deposition on heat and mass transfer across the dynamics of Casson fluid flow over a moving thin needle. Physica Scripta, 96, 075210(2021) [11] KOTRESH, M. J., RAMESH, G. K., SHASHIKALA, V. K. R., and PRASANNAKUMARA, B. C. Assessment of Arrhenius activation energy in stretched flow of nanofluid over a rotating disc. Heat Transfer, 50, 2807-2828(2020) [12] KHAN, M. I., ALZAHRANI, F., HOBINY, A., and ALI, Z. Estimation of entropy generation in Carreau-Yasuda fluid flow using chemical reaction with activation energy. Journal of Materials and Research Technology, 9, 9951-9964(2020) [13] WAQAS, M., JABEEN, S., HAYAT, T., SHEHZAD, S. A., and ALSAEDI, A. Numerical simulation for nonlinear radiated Eyring-Powell nanofluid considering magnetic dipole and activation energy. International Communications in Heat and Mass Transfer, 112, 104401(2020) [14] KHAN, M. I. and ALZAHRANI, F. Activation energy and binary chemical reaction effect in nonlinear thermal radiative stagnation point flow of Walter-B nanofluid:numerical computations. International Journal of Modern Physics B, 34, 2050132(2020) [15] RAMESH, G. K. Analysis of active and passive control of nanoparticles in viscoelastic nanomaterial inspired by activation energy and chemical reaction. Physica A:Statistical Mechanics and its Applications, 550, 123964(2020) [16] AYUB, M., MALIK, M. Y., IJAZ, M., ALQARNI, M. S., and ALQAHTANI, A. S. Cattaneo-Christov double-diffusion model for viscoelastic nanofluid with activation energy and nonlinear thermal radiation. Multidiscipline Modeling in Materials and Structures, 16, 93-120(2019) [17] TURKYILMAZOGLU, M. Thermal radiation effects on the time-dependent MHD permeable flow having variable viscosity. International Journal of Thermal Sciences, 50, 88-96(2011) [18] AHMED, A., KHAN, M., IRFAN, M., and AHMED, J. Transient MHD flow of Maxwell nanofluid subject to non-linear thermal radiation and convective heat transport. Applied Nanoscience, 10, 5361-5373(2020) [19] MAKINDE, O. D. and ANIMASAUN, I. L. Bioconvection in MHD nanofluid flow with nonlinear thermal radiation and quartic autocatalysis chemical reaction past an upper surface of a paraboloid of revolution. International Journal of Thermal Sciences, 109, 159-171(2016) [20] IJAZ, M., NADEEM, S., AYUB, M., and MANSOOR, S. Simulation of magnetic dipole on gyrotactic ferromagnetic fluid flow with nonlinear thermal radiation. Journal of Thermal Analysis and Calorimetery, 143, 2053-2067(2021) [21] SHEHZAD, S. A., REDDY, M. G., RAUF, A., and ABBAS, Z. Bioconvection of Maxwell nanofluid under the influence of double diffusive Cattaneo-Christov theories over isolated rotating disk. Physica Scripta, 95, 045207(2020) [22] ABBASI, A., MABOOD, F., FAROOQ, W., and BATOOL, M. Bioconvective flow of viscoelastic nanofluid over a convective rotating stretching disk. International Communications in Heat and Mass Transfer, 119, 104921(2020) [23] MAKINDE, O. D. and ANIMASAUN, I. L. Thermophoresis and Brownian motion effects on MHD bioconvection of nanofluid with nonlinear thermal radiation and quartic chemical reaction past an upper horizontal surface of a paraboloid of revolution. Journal of Molecular Liquids, 221, 733-743(2016) [24] SHEHZAD, S. A., MUSHTAQ, T., ABBAS, Z., RAUF, A., KHAN, S. U., and TLILI, I. Dynamics of bioconvection flow of micropolar nanoparticles with Cattaneo-Christov expressions. Applied Mathematics and Mechanics (English Edition), 41(9), 1333-1344(2020) https://doi.org/10.1007/s10483-020-2645-9 [25] RASOOL, G., SHAFIQ, A., and TLILI, I. Marangoni convective nanofluid flow over an electromagnetic actuator in the presence of first-order chemical reaction. Heat Transfer-Asian Research, 49, 274-288(2020) [26] REHMAN, A., GUL, T., SALLEH, Z., MUKHTAR, S., HUSSAIN, F., NISAR, K. S., and KUMAM, P. Effect of the Marangoni convection in the unsteady thin film spray of CNT nanofluids. Processes, 7, 7060392(2019) [27] KHAN, M. I., QAYYUM, S., CHU, Y. M., KHAN, N. B., and KADRY, S. Transportation of Marangoni convection and irregular heat source in entropy optimized dissipative flow. International Communications in Heat and Mass Transfer, 120, 105031(2021) [28] SADIQ, M. A. and HAYAT, T. Characterization of Marangoni forced convection in Casson nanoliquid flow with Joule heating and irreversibility. Entropy, 22, 22040433(2020) [29] RASHID, U., BALEANU, D., LIANG, H., ABBAS, M., IQBAL, A., and RAHMAN, J. Marangoni boundary layer flow and heat transfer of graphene-water nanofluid with particle shape effects. Processes, 8, 8091120(2020) [30] QAYYUM, S. Dynamics of Marangoni convection in hybrid nanofluid flow submerged in ethylene glycol and water base fluids. International Communications in Heat and Mass Transfer, 119, 104962(2020) [31] KHASHI'IE, N. S., ARIFIN, N. M., POP, I., NAZAR, R., HAFIDZUDDIN, E. H., and WAHI, N. Thermal Marangoni flow past a permeable stretching/shrinking sheet in a hybrid Cu-Al2O3/water nanofluid. Sains Malaysiana, 49, 211-222(2020) [32] SANKAD, G. C., MAHARUDRAPPPA, I., and DHANGE, M. Y. Bioconvection in Casson fluid flow with gyrotactic microorganisms and heat transfer over a linear stretching sheet in presence of magnetic field. Advances in Mathematics Scientific Journal, 10, 155-169(2021) [33] COLIN, S. International journal of heat and technology:foreword. International Journal of Heat and Technology, 26, 107(2008) [34] ALWAWI, F. A., ALKASASBEH, H. T., RASHAD, A. M., and IDRIS, R. Natural convection flow of sodium alginate based Casson nanofluid about a solid sphere in the presence of a magnetic field with constant surface heat flux. Journal of Physics:Conference Series, 1366, 012005(2019) [35] MOTSA, S. S. A new spectral relaxation method for similarity variable nonlinear boundary layer flow systems. Chemical Engineering Communications, 201, 241-256(2014) [36] ETWIRE, C. J., SEINI, I. Y., RABIU, M., and MAKINDE, O. D. Impact of thermophoretic transport of Al2O3 nanoparticles on viscoelastic flow of oil-based nanofluid over a porous exponentially stretching surface with activation energy. Engineering Transactions, 67, 387-410(2019) |