[1] CHUNG, S., SONG, S. E., and CHO, Y. T. Effective software solutions for 4D printing:a review and proposal. International Journal of Precision Engineering and Manufacturing-Green Technology, 4(3), 359-371(2017) [2] KUANG, X., ROACH, D. J., WU, J. T., HAMEL, C. M., DING, Z., WANG, T. J., DUNN, M. L., and QI, H. J. Advances in 4D printing:materials and applications. Advanced Functional Materials, 29(2), 1805290(2019) [3] WU, J. J., HUANG, L. M., ZHAO, Q., and XIE, T. 4D printing:history and recent progress. Chinese Journal of Polymer Science, 36(5), 563-575(2018) [4] MOMENI, F., LIU, X., and NI, J. A review of 4D printing. Materials & Design, 122, 42-79(2017) [5] KUKSENOK, O. and BALAZS, A. C. Stimuli-responsive behavior of composites integrating thermo-responsive gels with photo-responsive fibers. Materials Horizons, 3(1), 53-62(2016) [6] RYU, J., JUNG, B. S., KIM, M. S., KONG, J. P., CHO, M. H., and AHN, S. H. Numerical simulation of hybrid composite shape-memory alloy wire-embedded structures. Journal of Intelligent Material Systems and Structures, 22(17), 1941-1948(2011) [7] AKBARI, S., SAKHAEI, A. H., KOWSARI, K., YANG, B., SERJOUEI, A., ZHANG, Y. F., and GE, Q. Enhanced multimaterial 4D printing with active hinges. Smart Materials and Structures, 27(6), 065027(2018) [8] GE, Q., SAKHAEI, A. H., LEE, H., DUNN, C. K., FANG, N. X., and DUNN, M. L. Multimaterial 4D printing with tailorable shape memory polymers. Scientific Reports, 6(1), 1-11(2016) [9] SONG, Z. Y., REN, L. Q., ZHAO, C., LIU, H. L., YU, Z. L., LIU, Q. P., and REN, L. Biomimetic nonuniform, dual-stimuli self-morphing enabled by gradient four-dimensional printing. ACS Applied Materials & Interfaces, 12(5), 6351-6361(2020) [10] WANG, G. Y., TAO, Y., CAPUNAMAN, O. B., YANG, H., and YAO, L. N. A-line:4D printing morphing linear composite structures. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Association for Computing Machinery, New York, 1-12(2019) [11] SOSSOU, G., DEMOLY, F., BELKEBIR, H., QI, H., GOMES, S., and MONTAVON, G. Design for 4D printing:a voxel-based modeling and simulation of smart materials. Materials & Design, 175, 107798(2019) [12] SOSSOU, G., DEMOLY, F., BELKEBIR, H., QI, H., GOMES, S., and MONTAVON, G. Design for 4D printing:modeling and computation of smart materials distributions. Materials & Design, 181, 108074(2019) [13] ZHANG, Z. and GU, G. X. Finite-element-based deep-learning model for deformation behavior of digital materials. Advanced Theory and Simulations, 3(7), 2000031(2020) [14] QIU, H., FENG, Y. X., GAO, Y. C., ZENG, S. Y., and TAN, J. R. The origami inspired design of polyhedral cells of truss core panel. Thin-Walled Structures, 163, 107725(2021) [15] DENG, D. and CHEN, Y. Origami-based self-folding structure design and fabrication using projection based stereolithography. Journal of Mechanical Design, 137(2), 021701(2015) [16] DENG, D. and CHEN, Y. 4D printing:design and fabrication of 3D shell structures with curved surfaces using controlled self-folding. ASME 2015 International Manufacturing Science and Engineering Conference, American Society of Mechanical Engineers Digital Collection, North Carolina (2015) [17] MAO, Y., YU, K., ISAKOV, M. S., WU, J. T., DUNN, M. L., and QI, H. J. Sequential self-folding structures by 3D printed digital shape memory polymers. Scientific Reports, 5(1), 1-12(2015) [18] ZENG, S. Y., FENG, Y. X., GAO, Y. C., ZHENG, H., and TAN, J. R. Layout design and application of 4D-printing bio-inspired structures with programmable actuators. Bio-Design and Manufacturing (2021) https://doi.org/10.1007/s42242-021-00146-3 [19] GE, Q., DUNN, C. K., QI, H. J., and DUNN, M. L. Active origami by 4D printing. Smart Materials and Structures, 23(9), 094007(2014) [20] YUAN, C., DING, Z., WANG, T. J., DUNN, M. L., and QI, H. J. Shape forming by thermal expansion mismatch and shape memory locking in polymer/elastomer laminates. Smart Materials and Structures, 26(10), 105027(2017) [21] SU, J. W., TAO, X., DENG, H., ZHANG, C., JIANG, S., LIN, Y. Y., and LIN, J. 4D printing of a self-morphing polymer driven by a swellable guest medium. Soft Matter, 14(5), 765-772(2018) [22] CUI, J., ADAMS, J. G. M., and ZHU, Y. Controlled bending and folding of a bilayer structure consisting of a thin stiff film and a heat shrinkable polymer sheet. Smart Materials and Structures, 27(5), 055009(2018) [23] NAFICY, S., GATELY, R., GORKIN, R., XIN, H., and SPINKS, G. M. 4D printing of reversible shape morphing hydrogel structures. Macromolecular Materials and Engineering, 302(1), 1600212(2017) [24] GLADMAN, A. S., MATSUMOTO, E. A., NUZZO, R. G., MAHADEVAN, L., and LEWIS, J. A. Biomimetic 4D printing. Nature Materials, 15(4), 413-418(2016) [25] WU, Y., HAO, X. P., XIAO, R., LIN, J., WU, Z. L., YIN, J., and QIAN, J. Controllable bending of bi-hydrogel strips with differential swelling. Acta Mechanica Solida Sinica, 32(5), 652-662(2019) [26] VAN REES, W. M., VOUGA, E., and MAHADEVAN, L. Growth patterns for shape-shifting elastic bilayers. Proceedings of the National Academy of Sciences, 114(44), 11597-11602(2017) [27] VAN REES, W. M., MATSUMOTO, E. A., GLADMAN, A. S., LEWIS, J. A., and MAHADEVAN, L. Mechanics of biomimetic 4D printed structures. Soft Matter, 14(43), 8771-8779(2018) [28] BARTELS, S., BONITO, A., and NOCHETTO, R. H. Bilayer plates:model reduction, Γ-convergent finite element approximation, and discrete gradient flow. Communications on Pure and Applied Mathematics, 70(3), 547-589(2017) [29] BARTELS, S., BONITO, A., MULIANA, A. H., and NOCHETTO, R. H. Modeling and simulation of thermally actuated bilayer plates. Journal of Computational Physics, 354, 512-528(2018) [30] LIU, Z. Y., LIU, H., DUAN, G. F., and TAN, J. R. Folding deformation modeling and simulation of 4D printed bilayer structures considering the thickness ratio. Mathematics and Mechanics of Solids, 25(2), 348-361(2020) [31] VAN MANEN, T., JANBAZ, S., and ZADPOOR, A. A. Programming 2D/3D shape-shifting with hobbyist 3D printers. Materials Horizons, 4(6), 1064-1069(2017) [32] ZHENG, S. Y., SHEN, Y. Y., ZHU, F. B., YIN, J., QIAN, J., FU, J. Z., WU, Z. L., and ZHENG, Q. Programmed deformations of 3D-printed tough physical hydrogels with high response speed and large output force. Advanced Functional Materials, 28(37), 1803366(2018) [33] WANG, Y. and LI, X. An accurate finite element approach for programming 4D-printed selfmorphing structures produced by fused deposition modeling. Mechanics of Materials, 151, 103628(2020) [34] YU, Y. X., LIU, H. L., QIAN, K. R., YANG, H., MCGEHEE, M., GU, J. Z., LUO, D. L., YAO, L. N., and ZHANG, Y. J. Material characterization and precise finite element analysis of fiber reinforced thermoplastic composites for 4D printing. Computer-Aided Design, 122, 102817(2020) [35] NOROOZI, R., BODAGHI, M., JAFARI, H., ZOLFAGHARIAN, A., and FOTOUHI, M. Shapeadaptive metastructures with variable bandgap regions by 4D printing. Polymers, 12(3), 519(2020) [36] ANG, K. J., RILEY, K. S., FABER, J., and ARRIETA, A. F. Switchable bistability in 3D printed shells with bio-inspired architectures and spatially distributed pre-stress. ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, American Society of Mechanical Engineers Digital Collection, Texas (2018) [37] ZENG, S. Y., GAO, Y. C., FENG, Y. X., ZHENG, H., QIU, H., and TAN, J. R. Programming the deformation of a temperature-driven bilayer structure in 4D printing. Smart Materials and Structures, 28(10), 105031(2019) [38] FENG, Y. X., XU, J. J., ZENG, S. Y., GAO, Y. C., and TAN, J. R. Controlled helical deformation of programmable bilayer structures:design and fabrication. Smart Materials and Structures, 29(8), 085042(2020) [39] TIMOSHENKO, S. Analysis of bi-metal thermostats. Journal of the Optical Society of America, 11(3), 233-255(1925) [40] BARTELS, S. Numerical Methods for Nonlinear Partial Differential Equations, Springer, Berlin, 217-257(2015) |