[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951-1953(1984) [2] HUTTUNEN-SAARIVIRTA, E. Microstructure, fabrication and properties of quasicrystalline AlCu-Fe alloys:a review. Journal of Alloys and Compounds, 363, 150-174(2004) [3] USTINOV, A. I. and POLISCHUK HUTTUNEN-SAARIVIRTA, S. S. Analysis of the texture of heterogeneous Al-Cu-Fe coatings containing quasicrystalline phase. Scripta Materialia, 47, 881-886(2002) [4] GUO, X. P., CHEN, J. F., YU, H. L., LIAO, H. L., and CODDET, C. A study on the microstructure and tribological behavior of cold-sprayed metal matrix composites reinforced by particulate quasicrystal. Surface & Coatings Technology, 268, 94-98(2015) [5] KANG, S. S., DUBOIS, J. M., and STEBUT, J. V. Tribological properties of quasicrystalline coatings. Journal of Materials Research, 8, 2471-2481(1993) [6] SORDELET, D. J., BESSER, M. F., and LOGSDON, J. L. Abrasive wear behavior of Al-Cu-Fe quasicrystalline composite coatings. Materials Science & Engineering A, 255, 54-65(1998) [7] MILMAN, Y. V., LOTSKO, D. V., DUB, S. N., USTINOV, A. I., POLISHCHUK, S. S., and ULSHIN, S. V. Mechanical properties of quasicrystalline Al-Cu-Fe coating with submicron-sized grains. Surface & Coatings Technology, 201, 5937-5943(2007) [8] FU, Y. Q., AN, L. T., ZHOU, F., ZHAO, Y. Y., YANG, D. M., and GAO, Y. Al-Cu-Cr quasicrystalline coatings prepared by low power plasma spraying. Surface & Coatings Technology, 202, 4964-4970(2008) [9] KHUN, N. W., LI, R. T., LOKE, K., and KHOR, K. A. Effects of Al-Cr-Fe quasicrystal content on tribological properties of cold-sprayed titanium composite coatings. Tribology Transactions, 58, 616-624(2015) [10] GAO, Y. and RICOEUR, A. Green's functions for infinite bi-material planes of cubic quasicrystals with imperfect interface. Physics Letters A, 374, 4354-4358(2010) [11] FAN, T. Y., XIE, L. Y., FAN, L., and WANG, Q. Z. Interface of quasicrystal and crystal. Chinese Physics B, 20, 076102(2011) [12] HOU, P. F., CHEN, B. J., and ZHANG, Y. An accurate and efficient analytical method for 1D hexagonal quasicrystal coating under the tangential force based on the Green's function. International Journal of Mechanical Science, 131-132, 982-1000(2017) [13] HOU, P. F., CHEN, B. J., and ZHANG, Y. An accurate and efficient analytical method for 1D hexagonal quasicrystal coating based on Green's function. Zeitschrift für Angewandte Mathematik und Physik, 68, 95(2017) [14] LI, Y., YANG, L. Z., ZHANG, L. L., and GAO, Y. Nonlocal free and forced vibration of multilayered two-dimensional quasicrystal nanoplates. Mechanics of Advanced Materials and Structures, 28, 1216-1226(2021) [15] SUN, T. Y., GUO, J. H., and ZHAN, X. Y. Static deformation of a multilayered one-dimensional hexagonal quasicrystal plate with piezoelectric effect. Applied Mathematics and Mechanics (English Edition), 39, 335-352(2018) https://doi.org/10.1007/s10483-018-2309-9 [16] GUO, J. H., SUN, T. Y., and PAN, E. Three-dimensional nonlocal buckling of composite nanoplates with coated one-dimensional quasicrystal in an elastic medium. International Journal of Solids and Structures, 185-186, 272-280(2020) [17] ZHANG, Z. and URBAN, K. Transmission electron microscope observation of dislocation and stacking faults in a decagonal Al-Cu-Co alloy. Philosophical Magazine Letters, 60, 97-102(1989) [18] DANG, H. Y., LV, S. Y., FAN, C. Y., LU, C. S., REN, J. L., and ZHAO, M. H. Analysis of antiplane interface cracks in one-dimensional hexagonal quasicrystal coating. Applied Mathematical Modelling, 81, 641-652(2020) [19] ZHAO, M. H., FAN, C. Y., LU, C. S., and DANG, H. Y. Analysis of interface cracks in onedimensional hexagonal quasi-crystal coating under in-plane loads. Engineering Fracture Mechanics, 243, 107534(2021) [20] ZHANG, H., SLADEK, J., SLADEK, V., WANG, S. K., and WEN, P. H. Fracture analysis of functionally graded material by hybrid meshless displacement discontinuity method. Engineering Fracture Mechanics, 247, 107591(2021) [21] CROUCH, S. L. Solution of plane elasticity problems by the displacement discontinuity method I infinite body solution. International Journal of Numerical Methods Engineering, 10, 301-343(1976) [22] LI, Y., DANG, H. Y., XU, G. T., FAN, C. Y., and ZHAO, M. H. Extended displacement discontinuity boundary integral equation and boundary element method for cracks in thermo-magnetoelectro-elastic media. Smart Materials and Structures, 25, 085048(2016) [23] ZHAO, M. H., PAN, Y. B., FAN, C. Y., and XU, G. T. Extended displacement discontinuity method for analysis of cracks in 2D thermal piezoelectric semiconductors. Smart Materials and Structures, 26, 085029(2017) [24] SHEN, B. and SHI, J. An indirect boundary element method for analysis of 3D thermoelastic problem with cracks. Engineering Analysis with Boundary Elements, 115, 120-132(2020) [25] LI, M., TIAN, Y. L., WEN, P. H., and ALIABADI, M. H. Anti-plane interfacial crack with functionally graded coating:static and dynamic. Theoretical and Applied Fracture Mechanics, 86, 250-259(2016) [26] DING, D. H., YANG, W. G., HU, C. Z., and WANG, R. H. Generalized elasticity theory of quasicrystals. Physical Review B, 48, 7003-7010(1993) [27] ZHOU, Y. B., LIU, G. T., and LI, L. H. Effect of T-stress on the fracture in an infinite one-dimensional hexagonal piezoelectric quasicrystal with a Griffith crack. European Journal of Mechanics-A/Solids, 86, 104184(2021) [28] ZHAO, M. H., SHEN, Y. P., LIU, Y. J., and LIU, G. N. The method of analysis of cracks in three-dimensional transversely isotropic media:boundary integral equation approach. Engineering Analysis with Boundary Elements, 21, 169-178(1988) [29] LI, X. F. and FAN, T. Y. New method for solving elasticity problems of some planar quasicrystals and solutions. Chinese Physics Letters, 15, 278-280(1998) [30] ZHANG, L. L., YANG, L. Z., YU, L. Y., and GAO, Y. General solutions of thermoelastic plane problems of two-dimensional quasicrystals. Transactions of Nanjing University of Aeronautics and Astronautics, 31, 132-136(2014) [31] GAO, Y. and SHANG, L. G. Governing equations and general solutions of plane elasticity of twodimensional decagonal quasicrystals. International Journal of Modern Physics B, 25, 2769-2778(2011) [32] HOU, P. F., JIANG, H. Y., and LI, Q. H. Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications 1:general solutions. Journal of Thermal Stresses, 36, 727-747(2013) [33] WEN, P. H., ALIABADI, M. H., SLADEK, J., and SLADEK, V. Displacement discontinuity method for cracked orthotropic strip:dynamic. Wave Motion, 45, 293-308(2008) [34] ZHANG, A. B. and WANG, B. L. An opportunistic analysis of the interface crack based on the modified interface dislocation method. International Journal of Solids and Structures, 50, 15-20(2013) [35] TANG, R. J., CHEN M. C., and YUE, J. C. Theoretical analysis of three-dimensional interface crack. Science in China Series A:Mathematics, 41, 443-448(1998) [36] FAN, T. Y. Mathematical theory and methods of mechanics of quasicrystalline materials. Engineering, 5, 407-448(2013) [37] DING, H. J., CHEN, B., and LIANG, J. General solutions for coupled equation for piezoelectric media. International Journal of Solids and Structures, 33, 2283-2298(1996) [38] ERDOGAN, F. and ARIN, K. A half plane and a strip with an arbitrarily located crack. International Journal of Fracture, 11, 191-204(1975) |