[1] SHECHTMAN, D., BLECH, I., GRATIAS, D., and CAHN, J. W. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 53, 1951–1953(1984) [2] DUBOIS, J. M. Properties and applications of quasicrystals and complex metallic alloys. Chemical Society Reviews, 41, 6760–6777(2012) [3] WOLF, W., SCHULZ, R., SAVOIE, S., BOLFARINI, C., KIMINAMI, C. S., and BOTTA, E. J. Structural, mechanical and thermal characterization of an Al-Co-Fe-Cr alloy for wear and thermal barrier coating applications. Surface & Coatings Technology, 319, 241–248(2017) [4] DUBOIS, J. M., KANG, S. S., and STEBUT, J. V. Quasicrystalline low-friction coatings. Journal of Materials Science Letters, 10, 537–541(1991) [5] DUBOIS, J. M. New prospects from potential applications of quasicrystalline materials. Materials Science and Engineering A: Structural Materials Properties Microstructure and Processing, 294, 4–9(2000) [6] UCHIDA, N. A review of thermal barrier coatings for improvement in thermal efficiency of both gasoline and diesel reciprocating engines. International Journal of Engine Research, 23, 3–19(2022) [7] ZHOU, C. G., CAI, R., GONG, S. K., and XU, H. B. Hot corrosion of AlCuFeCr quasicrystalline coating on titanium alloys with NaCl deposit. Surface & Coatings Technology, 201, 1718–1723(2006) [8] MOHSENI, M., RECLA, L., MORA, J., GALLEGO, P. G., AGUERO, A., and GOLOVIN, K. Quasicrystalline coatings exhibit durable low interfacial toughness with ice. ACS Applied Materials & Interfaces, 13, 36517–36526(2021) [9] MORA, J., GARCIA, P., MUELAS, R., and AGUERO, A. Hard quasicrystalline coatings deposited by HVOF thermal spray to reduce ice accretion in aero-structures components. Coatings, 10, 290(2020) [10] WOLF, W., BOLFARINI, C., KIMINAMI, C. S., and BOTTA, W. J. Recent developments on fabrication of Al-matrix composites reinforced with quasicrystals: from metastable to conventional processing. Journal of Materials Research, 36, 281–297(2021) [11] NAYAK, C., AGHAJAMALI, A., SOLAIMANI, M., RAKSHIT, J. K., PANIGRAHY, D., KUMAR, K. V. P., and RAMAKRISHNA, B. Dodecanacci superconductor-metamaterial photonic quasicrystal. Optik, 222, 165290(2020) [12] HUTTUNEN-SAARIVIRTA, E. Microstructure, fabrication and properties of quasicrystalline AlCu-Fe alloys: a review. Journal of Alloys and Compounds, 363, 150–174(2004) [13] PARSAMEHR, H., CHEN, T. S., WANG, D. S., LEU, M. S., HAN, I., XI, Z. C., TSAI, A. P., SHAHANI, A. J., and LAI, C. H. Thermal spray coating of Al-Cu-Fe quasicrystals: dynamic observations and surface properties. Materialia, 8, 100432(2019) [14] SOUZA, T. A., SILVA, D. D. S., JUNIOR, F. W. E. L. A., FEITOSA, F. R. P., GOMES, R. M., and LIMA, B. A. S. G. Analysis of the surface properties of Al-Cu-Fe-B and Al-Co-Cu quasicrystalline coatings produced by HVOF. MRS Communications, 11, 873–878(2021) [15] LIU, X. Q., WU, Y. S., QIU, Z. G., LU, Z. Y., YAO, S. Q., ZHUO, S. Y., and ZENG, D. C. Simultaneously enhancing wear and corrosion resistance of HVAF-sprayed Fe-based amorphous coating from Mo clad feedstock. Journal of Materials Processing Technology, 302, 117465(2022) [16] CAI, M. W. and SHEN, J. Phase transformation of high velocity air fuel (HVAF)-sprayed Al-CuFe-Si quasicrystalline coating. Metals, 10, 834(2020) [17] FU, Y. Q., KANG, N., LIAO, H. L., GAO, Y., and CODDET, C. An investigation on selective laster melting of Al-Cu-Fe-Cr quasicrystal: from single layer to multilayers. Intermetallics, 86, 51–58(2017) [18] POLISHCHUK, S., USTINOV, A., TELYCHKO, V., MERSTALLINGER, A., MOZDZEN, G., and MELNICHENKO, T. Fabrication of thick, crack-free quasicrystalline Al-Cu-Fe coatings by electron-beam deposition. Surface & Coatings Technology, 291, 406–412(2016) [19] FEITOSA, F. R. P., GOMES, R. M., SILVA, M. M. R., DE LIMA, S. J. G., and DUBOIS, J. M. Effect of oxygen/fuel ratio on the microstructure and properties of HVOF-sprayed Al59Cu25.5Fe12.5B3 quasicrystalline coatings. Surface & Coatings Technology, 353, 171–178(2018) [20] XIAO, M., LIU, X. Q., ZENG, S. H., ZHENG, Z. G., WANG, G., QIU, Z. G., LIU, M., and ZENG, D. C. Effects of particle size on the microstructure and mechanical properties of HVAF-sprayed Al-based quasicrystalline coatings. Journal of Thermal Spray Technology, 30, 1380–1392(2021) [21] CHENG, J., WU, Y. P., HONG, S., CHENG, J. B., QIAO, L., WANG, Y. J., and ZHU, S. S. Spray parameters optimization, microstructure and corrosion behavior of high-velocity oxygen-fuel sprayed non-equiatomic CuAlNiTiSi medium-entropy alloy coatings. Intermetallics, 142, 107442(2022) [22] BANDYOPADHYAY, P. P., HADAD, M., JAEGGI, C., and SIEGMANN, S. Microstructural, tribological and corrosion aspects of thermally sprayed Ti-Cr-Si coatings. Surface & Coatings Technology, 203, 35–45(2008) [23] SANCHEZ, A., DE BLAS, F. J., ALGABA, J. M., ALVAREZ, J., VALLES, P., GARCIAPOGGIO, M. C., and AGUERO, A. Application of quasicrystalline materials as thermal barriers in aeronautics and future perspectives of use for these materials. Materials Research Society Symposium Proceedings, 553, 447–458(1999) [24] FAN, T. Y., TANG, Z. Y., and CHEN, W. Q. Theory of linear, nonlinear and dynamic fracture for quasicrystals. Engineering Fracture Mechanics, 82, 185–194(2012) [25] SUN, T. Y., GUO, J. H., and PAN, E. Nonlocal vibration and buckling of two-dimensional layered quasicrystal nanoplates embedded in an elastic medium. Applied Mathematics and Mechanics (English Edition), 42(8), 1077–1094(2021) https://doi.org/10.1007/s10483-021-2743-6 [26] LI, L. H., CUI, X. W., and GUO, J. H. Interaction between a screw dislocation and an elliptical hole with two asymmetrical cracks in a one-dimensional hexagonal quasicrystal with piezoelectric effect. Applied Mathematics and Mechanics (English Edition), 41(6), 899–908(2020) https://doi.org/10.1007/s10483-020-2615-6 [27] ZHANG, M., GUO, J. H., and LI, Y. S. Bending and vibration of two-dimensional decagonal quasicrystal nanoplates via moddified couple-stress theory. Applied Mathematics and Mechanics (English Edition), 43(3), 371–388(2022) https://doi.org/10.1007/s10483-022-2818-6 [28] YANG, L. Z., LI, Y., GAO, Y., PAN, E. N., and WAKSMANSKI, N. Three-dimensional exact electric-elastic analysis of a multilayered two-dimensional decagonal quasicrystal plate subjected to patch loading. Composite Structures, 171, 198–216(2017) [29] HUANG, Y. Z., LI, Y., ZHANG, L. L., ZHANG, H., and GAO, Y. Dynamic analysis of a multilayered piezoelectric two-dimensional quasicrystal cylindrical shell filled with compressible fluid using the state-space approach. Acta Mechanica, 231, 2351–2368(2020) [30] HOU, P. F., CHE, B. J., and ZHANG, Y. An accurate and efficient analytical method for 1D hexagonal quasicrystal coating under the tangential force based on the Green’s function. International Journal of Mechanical Sciences, 131, 982–1000(2017) [31] HUANG, R. K., DING, S. H., CHEN, Q. W. L., LYU, C. F., ZHANG, X., and LI, X. Sliding frictional contact of one dimensional hexagonal piezoelectric quasicrystals coating on piezoelectric substrate with imperfect interface. International Journal of Solids and Structures, 239, 111423(2022) [32] FAN, T. Y., XIE, L. Y., FAN, L., and WANG, Q. Z. Interface of quasicrystal and crystal. Chinese Physics B, 20, 076102(2011) [33] DANG, H. Y., LYU, S. Y., FAN, C. Y., LU, C. S., REN, J. L., and ZHAO, M. H. Analysis of antiplane interface cracks in one-dimensional hexagonal quasicrystal coating. Applied Mathematical Modelling, 81, 641–652(2020) [34] ZHAO, M. H., FAN, C. Y., LU, C. S., and DANG, H. Y. Interfacial fracture analysis for a twodimensional decagonal quasi-crystal coating layer structure. Applied Mathematics and Mechanics (English Edition), 42, 1633–1648(2021) https://doi.org/10.1007/s10483-021-2786-5 [35] CROUCH, S. L. Solution of plane elasticity problems by the displacement discontinuity method. I. Infinite body solution. International Journal for Numerical Methods in Engineering, 10, 301–343(1976) [36] CHEN, W. Q., MA, Y. L., and DING, H. J. On three-dimensional elastic problems of onedimensional hexagonal quasicrystal bodies. Mechanics Research Communications, 31, 633–641(2004) [37] HOU, P. F., JIANG, H. Y., and LI, Q. H. Three-dimensional steady-state general solution for isotropic thermoelastic materials with applications I: general solutions. Journal of Thermal Stresses, 36, 727–747(2013) [38] ZHAO, M. H., CHENG, C. J., and LIU, Y. J. Moment stress intensity factors for collinear and parallel cracks in Reissner’s plate: boundary integral equation approach. Theoretical and Applied Fracture Mechanics, 22, 261–266(1995) [39] ZHAO, Y. F., ZHAO, M. H., PAN, E. N., and FAN, C. Y. Green’s functions and extended displacement discontinuity method for interfacial cracks in three-dimensional transversely isotropic magneto-electro-elastic bi-materials. International Journal of Solids and Structures, 52, 56–71(2015) [40] ZHANG, A. B. and WANG, B. L. An opportunistic analysis of the interface crack based on the modified interface dislocation method. International Journal of Solids and Structures, 50, 15–20(2013) [41] TANG, R. J., CHEN, M. C., and YUE, J. C. Theoretical analysis of three-dimensional interface crack. Science in China Series A: Mathematics, 41, 443–448(1998) [42] DANG, H. Y., ZHAO, M. H., FAN, C. Y., and CHEN, Z. T. Analysis of a three-dimensional arbitrarily shaped interface crack in a one-dimensional hexagonal thermo-electro-elastic quasicrystal bi-material, part 2: numerical method. Engineering Fracture Mechanics, 180, 268–281(2017) |