[1]MANDELL, J. F., CHEN, J. H., and MCGARRY, F. J. A microdebonding test for in situ assessment of fibre/matrix bond strength in composite materials. International Journal of Adhesion & Adhesives, 1(1), 40-44(1980) [2] DETASSIS, M., FRYDMAN, E., VRIELING, D., ZHOU, X. F., WAGNER, H. D., and NAIRN, J. A. Interface toughness in fibre composites by the fragmentation test. Composites Part A: Applied Science and Manufacturing, 27(9), 769-773(1996) [3] LACROIX, T., TILMANS, B., KEUNINGS, R., DESAEGER, M., and VERPOEST, I. Modeling of critical fiber length and interfacial debonding in the fragmentation testing of polymer composites. Composites Science and Technology, 43(4), 379-387(1992) [4] MILLER, B., MURI, P., and REBENFELD, L. A microbond method for determination of the shear-strength of a fiber-resin interface. Composites Science and Technology, 28(1), 17-32(1987) [5] PIGGOTT, M. R., CHUA, P. S., and ANDISON, D. The interface between glass and carbon-fibers and thermosetting polymers. Polymer Composites, 6(4), 242-248(1985) [6] ALBERTI, M. G., ENFEDAQUE, A., GALVEZ, J. C., and FERRERAS, A. Pull-out behaviour and interface critical parameters of polyolefin fibres embedded in mortar and self-compacting concrete matrixes. Construction and Building Materials, 112, 607-622(2016) [7] VRIJDAGHS, R., DI PRISCO, M., and VANDEWALLE, L. Short-term and creep pull-out behavior of polypropylene macrofibers at varying embedded lengths and angles from a concrete matrix. Construction and Building Materials, 147, 858-864(2017) [8] BOSHOFF, W. P., MECHTCHERINE, V., and VAN ZIJL, G. Characterising the time-dependant behaviour on the single fibre level of SHCC: Part 2: the rate effects on fibre pull-out tests. Cement and Concrete Research, 39(9), 787-797(2009) [9] BEGLARIGALE, A. and YAZICI, H. Pull-out behavior of steel fiber embedded in flowable RPC and ordinary mortar. Construction and Building Materials, 75, 255-265(2015) [10] WON, J. P., LEE, J. H., and LEE, S. J. Predicting pull-out behaviour based on the bond mechanism of arch-type steel fibre in cementitious composite. Composite Structures, 134, 633-644(2015) [11] HAO, Y. F. and HAO, H. Pull-out behaviour of spiral-shaped steel fibres from normal-strength concrete matrix. Construction and Building Materials, 139, 34-44(2017) [12] QIU, Y. and SCHWARTZ, P. Micromechanical behavior of Kevlar-149/S-glass hybrid seven-fiber microcomposites: I. tensile strength of the hybrid composite. Composites Science and Technology, 47(3), 289-301(1993) [13] HAMPE, A. and MAROTZKE, C. Experimental results of a pull-out test performed with single- and multi-fiber samples. Journal of Adhesion, 78(2), 167-187(2002) [14] FENG, L., KUMBHANI, M., KIM, Y. K., and RICE, J. M. Multi-fiber pull-out test. Journal of Advanced Materials, 42(1), 55-64(2010) [15] STANG, H. and SHAH, S. P. Failure of fiber-reinforced composites by pull-out fracture. Journal of Materials Science, 21(3), 953-957(1986) [16] NAAMAN, A. E. Fiber pullout and bond slip. 1: analytical study. Journal of Structural Engineering-ASCE, 117(9), 2769-2790(1991) [17] LEE, Y., KANG, S. T., and KIM, J. K. Pullout behavior of inclined steel fiber in an ultra-high strength cementitious matrix. Construction and Building Materials, 24(10), 2030-2041(2010) [18] LIU, H. Y., QIN, Q. H., and MAI, Y. W. Theoretical model of piezoelectric fibre pull-out. International Journal of Solids and Structures, 40(20), 5511-5519(2003) [19] FRIKHA, M., NOURI, H., GUESSASMA, S., ROGER, F., and BRADAI, C. Interfacial behaviour from pull-out tests of steel and aluminium fibres in unsaturated polyester matrix. Journal of Materials Science, 52(24), 13829-13840(2017) [20] ESMAEILI, J., ANDALIBI, K., GENCEL, O., MALEKI, F. K., and MALEKI, V. A. Pull-out and bond-slip performance of steel fibers with various ends shapes embedded in polymer-modified concrete. Construction and Building Materials, 271, (2021) [21]WU, K., XU, Y., and CHENG, X. H. Simulation and analysis of single fiber pull-out tests through ANSYS and VC++. International Journal of Advanced Manufacturing Technology, 96(5-8), 1591-1599(2018) [22] LIU, Y. J., NISHIMURA, N., OTANI, Y., TAKAHASHI, T., CHEN, X. L., and MUNAKATA, H. A fast boundary element method for the analysis of fiber-reinforced composites based on a rigid-inclusion model. Journal of Applied Mechanics, 72(1), 115-128(2005) [23] BALLARINI, R. A rigid line inclusion at a bimaterial interface. Engineering Fracture Mechanics, 37(1), 1-5(1990) [24] KOITER, W. T. On the diffusion load from a stiffener into a sheet. Quarterly Journal of Mechanics & Applied Mathematics, 8, 164-178(1955) [25] LUO, J. C. and GAO, C. F. Faber series method for plane problems of an arbitrarily shaped inclusion. Acta Mechanica, 208(3-4), 133-145(2009) [26] YANG, B., CHEN, W. Q., and DING, H. J. Several three-dimensional solutions for transversely isotropic functionally graded material plate welded with circular inclusion. Applied Mathematics and Mechanics (English Edition), 37(6), 683-694(2016) \mbox{https://doi.org/10.1007/s10483-016-2086-6] [27] JOBIN, T. M., KHADERI, S. N., and RAMJI, M. Interaction of a rigid line inclusion with various discontinuities using experimental and numerical techniques. Theoretical and Applied Fracture Mechanics, 121, 103482(2022) [28] LIU, Y. W. and FANG, Q. H. Plane elastic problem on rigid lines along circular inclusion. Applied Mathematics and Mechanics (English Edition), 26(12), 1585-1594(2005) https://doi.org/10.1007/s10483-006-1207-z [29] WANG, B. L. and LI, J. E. Nonlocal elastic theory for a medium with one or more rigid inclusions——Mode III deformation. European Journal of Mechanics-A/Solids, 93, 104532(2022) [30] WANG, B. L. and LI, J. E. A rigid line inclusion in a nonlocal elastic medium——Mode I deformation. Engineering Fracture Mechanics, 267, 108433(2022) [31] WANG, B. L. and LI, J. E. Enhanced piezoelectric coupling by a line inclusion in piezoelectric medium associated with nonlocal theory of elasticity. Theoretical and Applied Fracture Mechanics, 119, 103301(2022) [32] ERDOGAN, F. and WU, B. H. Crack problems in FGM layers under thermal stresses. Journal of Thermal Stresses, 7(3), 437-445(1996) [33] STEHFEST, H. Numerical inversion of Laplace transforms. Communications of the ACM, 13(10), 47-49(1970) |