[1] KHELIF, A., AOUBIZA, B., MOHAMMADI, S., ADIBI, A., and LAUDE, V. Complete band gaps in two-dimensional phononic crystal slabs. Physical Review E, 74, 046610 (2006) [2] KUTSENKO, A. A., SHUVALOV, A. L., and NORRIS, A. N. Evaluation of the effective speed of sound in phononic crystals by the monodromy matrix method. Journal of the Acoustical Society of America, 130, 3553-3557 (2011) [3] KUTSENKO, A. A., SHUVALOV, A. L., and NORRIS, A. N. Converging bounds for the effective shear speed in 2D phononic crystals. Journal of Elasticity, 113, 179-191 (2013) [4] JANDRON, M. and HENANN, D. L. A numerical simulation capability for electroelastic wave propagation in dielectric elastomer composites: application to tunable soft phononic crystals. International Journal of Solids and Structures, 150, 1-21 (2018) [5] MADEO, A., COLLET, M., MINIACI, M., BILLON, K., OUISSE, M., and NEFF, P. Modeling phononic crystals via the weighted relaxed micromorphic model with free and gradient micro-inertia. Journal of Elasticity, 130, 59-83 (2018) [6] LAZAROV, B. S. and JENSEN, J. S. Low-frequency band gaps in chains with attached non-linear oscillators. International Journal of Non-Linear Mechanics, 42, 1186-1193 (2007) [7] VONDREJC, J., ROHAN, E., and HECZKO, J. Shape optimization of phononic band gap structures using the homogenization approach. International Journal of Solids and Structures, 113, 147-168 (2017) [8] DOMINO, L., TARPIN, M., PATINET, S., and EDDI, A. Faraday wave lattice as an elastic metamaterial. Physical Review E, 93, 050202 (2016) [9] WEI, C. Q., YAN, Z. Z., ZHENG, H., and ZHANG, C. Z. RBF collocation method and stability analysis for phononic crystals. Applied Mathematics and Mechanics (English Edition), 37(5), 627-638 (2016) https://doi.org/10.1007/s10483-016-2076-8 [10] MO, C. Y., SINGH, J., RANEY, J. R., and PUROHIT, P. K. Cnoidal wave propagation in an elastic metamaterial. Physical Review E, 100, 013001 (2019) [11] MIRANDA, E. J. P. and DOS SANTOS, J. M. C. Flexural wave band gaps in multi-resonator elastic metamaterial Timoshenko beams. Wave Motion, 91, 102391 (2019) [12] WU, Z. J., LIU, W. Y., LI, F. M., and ZHANG, C. Band-gap property of a novel elastic metamaterial beam with X-shaped local resonators. Mechanical Systems and Signal Processing, 134, 106357 (2019) [13] BEHRAVAN-RAD, A. and JAFARI, M. Hygroelasticity analysis of an elastically restrained functionally graded porous metamaterial circular plate resting on an auxetic material circular plate. Applied Mathematics and Mechanics (English Edition), 41(9), 1359-1380 (2020) https://doi.org/10.1007/s10483-020-2651-7 [14] ZHAO, P. C., ZHANG, K., ZHAO, C., and DENG, Z. C. Multi-resonator coupled metamaterials for broadband vibration suppression. Applied Mathematics and Mechanics (English Edition), 42(1), 53-64 (2021) https://doi.org/10.1007/s10483-021-2684-8 [15] EL-BORGI, S., FERNANDES, R., RAJENDRAN, P., YAZBECK, R., BOYD, J. G., and LAGOUDAS, D. C. Multiple bandgap formation in a locally resonant linear metamaterial beam: theory and experiments. Journal of Sound and Vibration, 488, 115647 (2020) [16] DENG, M. X. and XIANG, Y. X. Analysis of second-harmonic generation by primary horizontal shear modes in layered planar structures with imperfect interfaces. Journal of Applied Physics, 113, 043513 (2013) [17] IWAI, A., NAKAMURA, Y., and SAKAI, O. Enhanced generation of a second-harmonic wave in a composite of metamaterial and microwave plasma with various permittivities. Physical Review E, 92, 033105 (2015) [18] LI, Y. F., LAN, J., LI, B. S., LIU, X. Z., and ZHANG, J. S. Nonlinear effects in an acoustic metamaterial with simultaneous negative modulus and density. Journal of Applied Physics, 120, 145105 (2016) [19] CHAUNSALI, R., TOLES, M., YANG, J. Y., and KIM, E. Extreme control of impulse transmission by cylinder-based nonlinear phononic crystals. Journal of the Mechanics and Physics of Solids, 107, 21-32 (2017) [20] BANERJEE, A., CALIUS, E. P., and DAS, R. Impact based wideband nonlinear resonating metamaterial chain. International Journal of Non-Linear Mechanics, 103, 138-144 (2018) [21] LIANG, B., ZOU, X. Y., YUAN, B., and CHENG, J. C. Frequency-dependence of the acoustic rectifying efficiency of an acoustic diode model. Applied Physics Letters, 96, 233511 (2010) [22] LIANG, B., GUO, X. S., TU, J., ZHANG, D., and CHENG, J. C. An acoustic rectifier. Nature Materials, 9, 989-992 (2010) [23] BOECHLER, N., THEOCHARIS, G., and DARAIO, C. Bifurcation-based acoustic switching and rectification. Nature Materials, 10, 665-668 (2011) [24] LI, X. F., NI, X., FENG, L., LU, M. H., HE, C., and CHEN, Y. F. Tunable unidirectional sound propagation through a sonic-crystal-based acoustic diode. Physical Review Letters, 106, 084301 (2011) [25] LUO, B. B., GAO, S., LIU, J. H., MAO, Y. W., LI, Y. F., and LIU, X. Z. Nonreciprocal wave propagation in one-dimensional nonlinear periodic structures. AIP Advances, 8, 015113 (2018) [26] GRINBERG, I., VAKAKIS, A. F., and GENDELMAN, O. V. Acoustic diode: wave non-reciprocity in nonlinearly coupled waveguides. Wave Motion, 83, 49-66 (2018) [27] KONARSKI, S. G., HABERMAN, M. R., and HAMILTON, M. F. Frequency-dependent behavior of media containing pre-strained nonlinear inclusions: application to nonlinear acoustic metamaterials. Journal of the Acoustical Society of America, 144, 3022-3035 (2018) [28] DARABI, A., FANG, L. Z., MOJAHED, A., FRONK, M. D., VAKAKIS, A. F., and LEAMY, M. J. Broadband passive nonlinear acoustic diode. Physical Review B, 99, 214305 (2019) [29] CHEN, Y. J., WU, B., SU, Y. P., and CHEN, W. Q. Tunable two-way unidirectional acoustic diodes: design and simulation. Journal of Applied Mechanics, 86, 031010 (2019) [30] WALLEN, S. P. and HABERMAN, M. R. Nonreciprocal wave phenomena in spring-mass chains with effective stiffness modulation induced by geometric nonlinearity. Physical Review E, 99, 031001 (2019) [31] CHATTERJEE, M., DHUA, S., CHATTOPADHYAY, A., and SAHU, S. A. Reflection and refraction for three-dimensional plane waves at the interface between distinct anisotropic half-spaces under initial stresses. International Journal of Geomechanics, 16, 04015099 (2016) [32] ZHANG, Z., HAN, X. K., and JI, G. M. Mechanism for controlling the band gap and the flat band in three component phononic crystals. Journal of Physics and Chemistry of Solids, 123, 235-241 (2018) [33] GUO, X., JI, S. S., LIU, H., and REN, K. Dispersion relations of elastic waves in three-dimensional cubical piezoelectric phononic crystal with initial stresses and mechanically and dielectrically imperfect interfaces. Applied Mathematical Modelling, 69, 405-424 (2019) [34] FOMENKO, S. I., GOLUB, M. V., CHEN, A., WANG, Y. S., and ZHANG, C. Band-gap and pass-band classification for oblique waves propagating in a three-dimensional layered functionally graded piezoelectric phononic crystal. Journal of Sound and Vibration, 439, 219-240 (2019) [35] LI, Z. N., WANG, Y. Z., and WANG, Y. S. Three-dimensional nonreciprocal transmission in a layered nonlinear elastic wave metamaterial. International Journal of Non-Linear Mechanics, 125, 103531 (2020) [36] WANG, Y. Z., LI, F. M., and KISHIMOTO, K. Effects of the initial stress on the propagation and localization properties of Rayleigh waves in randomly disordered layered piezoelectric phononic crystals. Acta Mechanica, 216, 291-300 (2011) [37] GUO, X. and WEI, P. J. Dispersion relations of elastic waves in one-dimensional piezoelectric phononic crystal with initial stresses. International Journal of Mechanical Sciences, 106, 231-244 (2016) [38] BARNWELL, E. G., PARNELL, W. J., and ABRAHAMS, I. D. Antiplane elastic wave propagation in pre-stressed periodic structures; tuning, band gap switching and invariance. Wave Motion, 63, 98-110 (2016) [39] ROSE, J. L. Ultrasonic Waves in Solid Media, Cambridge University Press, Cambridge (1999) [40] NORRIS, A. N. Symmetry conditions for third order elastic moduli and implications in nonlinear wave theory. Journal of Elasticity, 25, 247-257 (1991) [41] DENG, M. X. Cumulative second-harmonic generation of Lamb-mode propagation in a solid plate. Journal of Applied Physics, 85, 3051-3058 (1999) [42] ROKHLIN, S. I. and WANG, L. Stable recursive algorithm for elastic wave propagation in layered anisotropic media: stiffness matrix method. Journal of the Acoustical Society of America, 112, 822-834 (2002) [43] TAN, E. L. Stiffness matrix method with improved efficiency for elastic wave propagation in layered anisotropic media. Journal of the Acoustical Society of America, 118, 3400-3403 (2005) [44] CHATTOPADHYAY, A. Wave reflection and refraction in triclinic crystalline media. Archive of Applied Mechanics, 73, 568-579 (2004) [45] QUINTANILLA, F. H., LOWE, M. J. S., and CRASTER, R. V. Full 3D dispersion curve solutions for guided waves in generally anisotropic media. Journal of Sound and Vibration, 363, 545-559 (2016) |