[1] NIELL-ELVIN, N. and ERTURK, A. Advances in Energy Harvesting Methods, Springer, New York (2013) [2] ERTURK, A. and INMAN, D. J. Piezoelectric Energy Harvesting, John Wiley and Sons, Chichester (2011) [3] PRIYA, S. and INMAN, D. J. Energy Harvesting Technologies, Springer, New York (2009) [4] YILDIRIM, T., GHAYESH, M. H., LI, W., and ALICI, G. A review on performance enhancement techniques for ambient vibration energy harvesters. Renewable and Sustainable Energy Reviews, 71, 435-449 (2017) [5] WEI, C. and JING, X. A comprehensive review on vibration energy harvesting: modelling and realization. Renewable and Sustainable Energy Reviews, 74, 1-18 (2017) [6] DAQAQ, M. F., MASANA, R., ERTURK, A., and QUINN, D. D. On the role of nonlinearities in vibratory energy harvesting: a critical review and discussion. Applied Mechanics Reviews, 66(4), 040801 (2014) [7] ZOU, H. X., ZHAO, L. C., GAO, Q. H., ZOU, L., LIU, F. R., TAN, T., XIANG, K., and ZHANG, W. M. Mechanical modulations for enhancing energy harvesting: principles, methods and applications. Applied Energy, 225, 113871 (2019) [8] TRAN, N., GHAYESH, M. H., and ARJOMANDI, M. Ambient vibration energy harvesters: a review on nonlinear techniques for performance enhancement. International Journal of Engineering Science, 127, 162-185 (2018) [9] HARNE, R. L. and WANG, K. W. A review of the recent research on vibration energy harvesting via bistable systems. Smart Materials and Structures, 22(2), 023001 (2013) [10] PELLEGRINI, S., TOLOU, N., SCHENK, M., and HERDER, J. Bistable vibration energy harvesters: a review. Journal of Intelligent Material Systems and Structure, 24(11), 1303-1312 (2013) [11] ERTURK, A. and INMAN, D. J. Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electro mechanical coupling. Journal of Sound and Vibration, 330(10), 2339-2353 (2011) [12] CAO, Q., WIERCIGROCH, M., PAVLOVSKAIA, E. E., GREBOGI, C., and THOMPSON, J. M. T. Archetypal oscillator for smooth and discontinuous dynamics. Physical Review E, 74(4), 046218 (2006) [13] CAO, Q., WIERCIGROCH, M., PAVLOVSKAIA, E. E., GREBOGI, C., and THOMPSON, J. M. T. The limit case response of the archetypal oscillator for smooth and discontinuous dynamics. International Journal of Non-Linear Mechanics, 43(6), 462-473 (2008) [14] SANTHOSH, B., PADMANABHAN, C., and NARAYANAN, S. Numeric-analytic solutions of the smooth and discontinuous oscillator. International Journal of Mechanical Sciences, 84, 046218 (2014) [15] TIAN, R., CAO, Q., and YANG, S. The codimension-two bifurcation for the recent proposed SD oscillator. Nonlinear Dynamics, 59(1), 19-27 (2010) [16] JIANG, W. and CHEN, L. Q. Snap-through piezoelectric energy harvesting. Journal of Sound and Vibration, 333(18), 4314-4325 (2014) [17] YANG, T. and CAO, Q. Dynamics and high-efficiency of a novel multi-stable energy harvesting system. Chaos, Solitons and Fractals, 131, 109516 (2020) [18] RAMLAN, R., BRENNAN, M. J., MACE, B. R., and KOVACIC, I. Potential benefits of a nonlinear stiffness in an energy harvesting device. Nonlinear Dynamics, 59(4), 545-558 (2010) [19] YANG, T. and CAO, Q. Dynamics and performance evaluation of a novel tristable hybrid energy harvester for ultra-low level vibration resources. International Journal of Mechanical Sciences, 156, 123-136 (2019) [20] LIU, B., LEVI, C., ESTEFEN, S. F., WU, Z., and DUAN, M. Evaluation of the double snap-through mechanism on the wave energy converters performance. Journal of Marine Science and Application, 192, 1-16 (2021) [21] YANG, T., CAO, Q., LI, Q., and QIU, H. A multi-directional multi-stable device: modeling, experiment verification and applications. Mechanical Systems and Signal Processing, 146, 106986 (2021) [22] JIANG, W. and CHEN, L. Q. Stochastic averaging of energy harvesting systems. International Journal of Non-Linear Mechanics, 85, 174-187 (2016) [23] YANG, T. and CAO, Q. Dynamics and energy generation of a hybrid energy harvester under colored noise excitation. Mechanical Systems and Signal Processing, 121, 745-766 (2019) [24] LU, Z. Q., LI, K., DING, H., and CHEN, L. Q. Nonlinear energy harvesting based on a modified snap-through mechanism. Applied Mathematics and Mechanics (English Edition), 40(1), 167-180 (2019) https://doi.org/10.1007/s10483-019-2408-9 [25] YANG, T., LIU, J., and CAO, Q. Response analysis of the archetypal smooth and discontinuous oscillator for vibration energy harvesting. Physica A: Statistical Mechanics and Its Applications, 507, 358-373 (2018) [26] FOUPOUAPOUOGNIGNI, O., BUCKJOHN, C. N. D., SIEWE, M. S., and TCHAWOUA, C. Hybrid electromagnetic and piezoelectric vibration energy harvester with Gaussian white noise excitation. Physica A: Statistical Mechanics and Its Applications, 509, 346-360 (2018) [27] ZHANG, X. T., TIAN, X. L., XIAO, L. F., LI, X., and CHEN, L. F. Application of an adaptive bistable power capture mechanism to a point absorber wave energy converter. Applied Energy, 228, 450-467 (2018) [28] ZHANG, X. T., TIAN, X. L., XIAO, L. F., LI, X., and LU, W. Y. Mechanism and sensitivity for broadband energy harvesting of an adaptive bistable point absorber wave energy converter. Energy, 188, 115984 (2019) [29] SONG, Y., GUO, X., WANG, H., TIAN, X., WEI, H., and ZHANG, X. Performance analysis of an adaptive bistable point absorber wave energy converter under white noise wave excitation. IEEE Transactions on Sustainable Energy, 12(2), 1090-1099 (2020) [30] WINKLER, R. Stochastic differential algebraic equations of index 1 and applications in circuit simulation. Journal of Computational and Applied Mathematics, 163(2), 435-463 (2003) [31] JIANG, W. A., SUN, P., ZHAO, G. L., and CHEN, L. Q. Path integral solution of vibratory energy harvesting systems. Applied Mathematics and Mechanics (English Edition), 40(4), 579-590 (2019) https://doi.org/10.1007/s10483-019-2467-8 [32] KUMAR, P., NARAYANAN, S., ADHIKARI, S., and FRISWELL, M. I. Fokker-Planck equation analysis of randomly excited nonlinear energy harvester. Journal of Sound and Vibration, 333(7), 2040-2053 (2014) [33] NARAYANAN, S. and KUMAR, P. Numerical solutions of Fokker-Planck equation of nonlinear systems subjected to random and harmonic excitations. Probabilistic Engineering Mechanics, 27(1), 35-46 (2012) |