[1] MAKARENKOV, O. and LAMB, J. S. W. Dynamics and bifurcations of nonsmooth systems:a survey. Physica D:Nonlinear Phenomena, 241, 1826-1844(2012) [2] BRZESKI, P., CHONG, A. S. E., WIERCIGROCH, M., and PERLIKOWSKI, P. Impact adding bifurcation in an autonomous hybrid dynamical model of church bell. Mechanical Systems and Signal Processing, 104, 716-724(2018) [3] JIANG, H. B., CHONG, A. S. E., UEDA, Y., and WIERCIGROCH, M. Grazing-induced bifurcations in impact oscillators with elastic and rigid constraints. International Journal of Mechanical Sciences, 127, 204-214(2017) [4] YI, T. T. and DU, Z. D. Degenerate grazing bifurcations in a simple bilinear oscillator. International Journal of Bifurcation and Chaos, 24, 037201(2014) [5] LI, D. H., CHEN, H. B., and XIE, J. H. Statistical properties of the universal limit map of grazing bifurcations. Journal of Physics A:Mathematical and Theoretical, 49, 355102(2016) [6] KRYZHEVICH, S. G. Grazing bifurcation and chaotic oscillations of vibro-impact systems with one degree of freedom. Journal of Applied Mathematics and Mechanics, 72, 383-390(2008) [7] KRYZHEVICH, S. G. and WIERCIGROCH, M. Topology of vibro-impact systems in the neighborhood of grazing. Physica D:Nonlinear Phenomena, 241, 1919-1931(2012) [8] MASON, J. F. and PⅡROINEN, P. T. Interactions between global and grazing bifurcations in an impacting system. Chaos, 21, 013113(2011) [9] MASON, J. F. and PⅡROINEN, P. T. The effect of codimension-two bifurcations on the global dynamics of a gear model. SIAM Journal on Applied Dynamical Systems, 8, 1694-1711(2009) [10] SHEN, Y. K., YIN, S., WEN, G. L., and XU, H. D. Feedback control of grazing induced chaos in the single-degree-of-freedom impact oscillator. Journal of Computational and Nonlinear Dynamics, 13, 011012(2017) [11] CHILLINGWORTH, D. Discontinuity geometry for an impact oscillator. Dynamical Systems, 17, 389-420(2002) [12] CHILLINGWORTH, D. Dynamics of an impact oscillator near a degenerate graze. Nonlinearity, 23, 2723-2748(2010) [13] JIANG, H. B. and WIERCIGROCH, M. Geometrical insight into non-smooth bifurcations of a soft impact oscillator. IMA Journal of Applied Mathematics, 81, 662-678(2016) [14] HUMPHRIES, N. and PⅡROINEN, P. T. A discontinuty-geometry view of the relationship between saddle-node and grazing bifurcations. Physica D:Nonlinear Phenomena, 241, 1911-1918(2012) [15] MASON, J. F., HUMPHRIES, N., and PⅡROINEN, P. T. Numerical analysis of codimensionone, -two and -three bifurcations in a periodically-forced impact oscillator with two discontinuity surfaces. Mathematics and Computers in Simulation, 95, 98-110(2013) [16] PⅡROINEN, P. T., VIRGIN, L. N., and CHAMPNEYS, A. R. Chaos and period adding:experimental and numerical verification of the grazing bifurcation. Journal of Nonlinear Science, 14, 383-404(2004) [17] ING, J., PAVLOVSKAIA, E., WIERCIGROCH, M., and BANERJEE, S. Bifurcation analysis of an impact oscillator with a one-sided elastic constraint near grazing. Physica D:Nonlinear Phenomena, 239, 312-321(2010) [18] CHAKRABORTY, I. and BALACHANDRAN, B. Near-grazing dynamics of base excited cantilevers with nonlinear tip interactions. Nonlinear Dynamics, 70, 1297-1310(2012) [19] NORDMARK, A. B. Non-periodic motion caused by grazing incidence in an impact oscillator. Journal of Sound and Vibration, 145, 279-297(1991) [20] DI BERNARDO, M., BUDD, C. J., and CHAMPNEYS, A. R. Normal form maps for grazing bifurcations in n-dimensional piecewise-smooth dynamical systems. Physica D:Nonlinear Phenomena, 160, 222-254(2001) [21] DI BERNARDO, M., BUDD, C. J., CHAMPNEYS, A. R., and KOWALCZYK, P. PiecewiseSmooth Dynamical Systems:Theory and Applications, Springer-Verlag, London, 265-295(2008) [22] MOLENAR, J., DE WEGER, J. G., and VAN DE WATER, W. Mappings of grazing-impact oscillators. Nonlinearity, 14, 301-321(2001) [23] KUNDU, S., BANERJEE, S., ING, J., PAVLOVSKAIA, E., and WIERCIGROCH, M. Singularities in soft-impacting systems. Physica D:Nonlinear Phenomena, 24, 553-565(2012) [24] KUNDU, S., BANERJEE, S., and GIAOURIS, D. Vanishing singularity in hard impacting systems. Discrete and Continuous Dynamical Systems-Series B, 16, 319-332(2011) [25] FOALE, S. Analytical determination of bifurcations in an impact oscillator. Philosophical Transactions of the Royal Society A, 347, 353-364(1994) [26] PETERKA, F. Bifurcations and transition phenomena in an impact oscillator. Chaos Solitons and Fractals, 7, 1635-1647(1996) [27] THOTA, P., ZHAO, X. P., and DANKOWICZ, H. Co-dimension-two grazing bifurcations in single-degree-of-freedom impact oscillators. Journal of Computational and Nonlinear Dynamics, 2, 328-335(2006) [28] DANKOWICZ, H. and ZHAO, X. P. Local analysis of co-dimension-one and co-dimension-two grazing bifurcations in impact microactuators. Physica D:Nonlinear Phenomena, 202, 238-257(2005) [29] ZHAO, X. P. and DANKOWICZ, H. Unfolding degenerate grazing dynamics in impact actuators. Nonlinearity, 19, 399-418(2006) [30] YIN, S., SHEN, Y. K., WEN, G. L., and XU, H. D. Analytical determination for degenerate grazing bifurcation points in the single-degree-of-freedom impact oscillator. Nonlinear Dynamics, 90, 443-456(2017) [31] DANKOWICZ, H. and JERRELIND, J. Control of near-grazing dynamics in impact oscillators. Proceedings of the Royal Society A, 461, 3365-3380(2005) [32] FREDRIKSSON, M. H. and NORDMARK, A. B. Bifurcations caused by grazing incidence in many degrees of freedom impact oscillators. Proceedings of the Royal Society A, 453, 1261-1276, (1997) [33] MISRA, S., DANKOWICZ, H., and PAUL, M. R. Degenerate discontinuity-induced bifurcations in tapping-mode atomic-force microscopy. Physica D:Nonlinear Phenomena, 239, 33-43(2010) [34] XU, H. D., YIN, S., WEN, G. L., ZHANG, S. J., and LV, Z. Y. Discrete-in-time feedback control of near-grazing dynamics in the two-degree-of-freedom vibro-impact system with a clearance. Nonlinear Dynamics, 87, 1127-1137(2017) [35] YIN, S., WEN, G. L., SHEN, Y. K., and XU, H. D. Instability phenomena in impact damper system:from quasi-periodic motion to period-three motion. Journal of Sound and Vibration, 391, 170-179(2017) [36] LI, G. F. and DING, W. C. Global behavior of a vibro-impact system with asymmetric clearances. Journal of Sound and Vibration, 423, 180-194(2018) [37] CHONG, A. S. E., YUE, Y., PAVLOVSKAIA, E., and WIERCIGROCH, M. Global dynamics of a harmonically excited oscillator with a play:numerical studies. International Journal of NonLinear Mechanics, 94, 98-108(2017) [38] GUZEK, A., DYSKIN, A. V., PASTERNAK, E., and SHUFRIN, I. Asymptotic analysis of bilinear oscillators with preload. International Journal of Engineering Science, 106, 125-141(2016) [39] TSENG, C. Y. and TUNG, P. C. The vibro-impact response of a nonharmonically excited system. JSME International Journal Series C, 43, 342-349(2000) [40] WEN, G. L. and XU, D. L. Implicit criteria of eigenvalue assignment and transversality for bifurcation control in four-dimensional maps. International Journal of Bifurcation and Chaos, 14, 3489-3503(2004) |