[1] BRINKMAN, J. A. On the nature of radiation damage in metals. Journal of Applied Physics, 25(8), 961–970 (1954) [2] JIN, M., CAO, P., YIP, S., and SHORT, M. P. Radiation damage reduction by grain-boundary biased defect migration in nanocrystalline Cu. Acta Materialia, 155, 410–417 (2018) [3] VETTERICK, G. A., GRUBER, J., SURI, P. K., BALDWIN, J. K., KIRK, M. A., BALDO, P., WANG, Y. Q., MISRA, A., TUCKER, J., and TAHERI, M. L. Achieving radiation tolerance through non-equilibrium grain boundary structures. Scientific Reports, 7(1), 1–9 (2017) [4] HAN, W. Z., DEMKOWICZ, M. J., FU, E. G., WANG, Y. Q., and MISRA, A. Effect of grain boundary character on sink efficiency. Acta Materialia, 60(18), 6341–6351 (2012) [5] BARR, C. M., NATHANIEL, J. E., Ⅱ, UNOCIC, K. A., LIU, J., ZHANG, Y., WANG, Y., and TAHERI, M. L. Exploring radiation induced segregation mechanisms at grain boundaries in equiatomic CoCrFeNiMn high entropy alloy under heavy ion irradiation. Scripta Materialia, 156, 80–84 (2018) [6] CHEN, Y., LIU, Y., FANG, Q., LI, J., LIU, Y., and LIAW, P. K. An unified model for dislocations interacting with complex-shape voids in irradiated metals. International Journal of Mechanical Sciences, 185, 105689 (2020) [7] BAI, X. M., VOTER, A. F., HOAGLAND, R. G., NASTASI, M., and UBERUAGA, B. P. Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science, 327(5973), 1631–1634 (2010) [8] CHEN, D., WANG, J., CHEN, T., and SHAO, L. Defect annihilation at grain boundaries in alpha-Fe. Scientific Reports, 3(1), 1–5 (2013) [9] SUN, C., SONG, M., YU, K. Y., CHEN, Y., KIRK, M., LI, M., WANG, H., and ZHANG, X. In situ evidence of defect cluster absorption by grain boundaries in Kr ion irradiated nanocrystalline Ni. Metallurgical and Materials Transactions A, 44(4), 1966–1974 (2013) [10] SONG, M., WU, Y. D., CHEN, D., WANG, X. M., SUN, C., YU, K. Y., CHEN, Y., SHAO, L., YANG, Y., HARTWIG, K. T., and ZHANG, X. Response of equal channel angular extrusion processed ultrafine-grained T91 steel subjected to high temperature heavy ion irradiation. Acta Materialia, 74, 285–295 (2014) [11] SHEN, T. D., FENG, S., TANG, M., VALDEZ, J. A., WANG, Y., and SICKAFUS, K. E. Enhanced radiation tolerance in nanocrystalline MgGa2O4. Applied Physics Letters, 90(26), 263115 (2007) [12] LI, J., YU, K. Y., CHEN, Y., SONG, M., WANG, H., KIRK, M. A., LI, M., and ZHANG, X. In situ study of defect migration kinetics and self-healing of twin boundaries in heavy ion irradiated nanotwinned metals. Nano Letters, 15(5), 2922–2927 (2015) [13] SCHNEIDER, M., GEORGE, E. P., MANESCAU, T. J., ZÁLEŽÁK, T., HUNFELD, J., DLOUHÝ, A., EGGELER, G., and LAPLANCHE, G. Analysis of strengthening due to grain boundaries and annealing twin boundaries in the CrCoNi medium-entropy alloy. International Journal of Plasticity, 124, 155–169 (2020) [14] ZHENG, Y., LI, Q., ZHANG, J., YE, H., ZHANG, H., and SHEN, L. Hetero interface and twin boundary mediated strengthening in nano-twinned Cu/Ag multilayered materials. Nanotechnology, 28(41), 415705 (2017) [15] GUO, X., CHEN, C., KANG, R., and JIN, Z. Study of mechanical properties and subsurface damage of quartz glass at high temperature based on MD simulation. Journal of Micromechanics and Molecular Physics, 4(2), 1950003 (2019) [16] FANG, Q., CHEN, Y., LI, J., JIANG, C., LIU, B., LIU, Y., and LIAW, P. K. Probing the phase transformation and dislocation evolution in dual-phase high-entropy alloys. International Journal of Plasticity, 114, 161–173 (2019) [17] LIN, Y., YANG, T., LANG, L., SHAN, C., DENG, H., HU, W., and GAO, F. Enhanced radiation tolerance of the Ni-Co-Cr-Fe high-entropy alloy as revealed from primary damage. Acta Materialia, 196, 133–143 (2020) [18] DENG, Q. Q., GAO, Y. J., LIU, Z. Y., HUANG, Z. J., LI, Y. X., and LUO, Z. R. Atomistic simulation of void growth by emitting dislocation pair during deformation. Physica B: Condensed Matter, 578, 411767 (2020) [19] LI, J., FANG, Q., LIU, B., and LIU, Y. Transformation induced softening and plasticity in high entropy alloys. Acta Materialia, 147, 35–41 (2018) [20] TERAYAMA, S., IWASE, Y., HAYAKAWA, S., OKITA, T., ITAKURA, M., and SUZUKI, K. Molecular dynamic simulations evaluating the effect of the stacking fault energy on defect formations in face-centered cubic metals subjected to high-energy particle irradiation. Computational Materials Science, 195, 110479 (2021) [21] LI, L., CHEN, H., FANG, Q., LI, J., LIU, F., LIU, Y., and LIAW, P. K. Effects of temperature and strain rate on plastic deformation mechanisms of nanocrystalline high-entropy alloys. Intermetallics, 120, 106741 (2020) [22] LI, J., FANG, Q., LIU, Y., and ZHANG, L. A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Applied Surface Science, 303, 331–343 (2014) [23] GAO, Y., YANG, T., XUE, J., YAN, S., ZHOU, S., WANG, Y., KWOK, T. K., CHU, P. K., and ZHANG, Y. Radiation tolerance of Cu/W multilayered nanocomposites. Journal of Nuclear Materials, 413(1), 11–15 (2011) [24] ZHANG, L., LU, C., and TIEU, A. K. Nonlinear elastic response of single crystal Cu under uniaxial loading by molecular dynamics study. Materials Letters, 227, 236–239 (2018) [25] LUO, G., LI, L., FANG, Q., LI, J., TIAN, Y., LIU, Y., LIU, B., PENG, J., and LIAW, P. K. Microstructural evolution and mechanical properties of FeCoCrNiCu high entropy alloys: a microstructure-based constitutive model and a molecular dynamics simulation study. Applied Mathematics and Mechanics (English Edition), 42(8), 1109–1122 (2021) https://doi.org/10.1007/s10483-021-2756-9 [26] JIN, M., CAO, P., and SHORT, M. P. Mechanisms of grain boundary migration and growth in nanocrystalline metals under irradiation. Scripta Materialia, 163, 66–70 (2019) [27] LI, B., LI, H. Y., and LUO, S. N. Molecular dynamics simulations of displacement cascades in nanotwinned Cu. Computational Materials Science, 152, 38–42 (2018) [28] DO, H. S. and LEE, B. J. Origin of radiation resistance in multi-principal element alloys. Scientific Reports, 8(1), 1–9 (2018) [29] STUKOWSKI, A. Visualization and analysis of atomistic simulation data with OVITO –- the open visualization tool. Modelling and Simulation in Materials Science and Engineering, 18(1), 015012 (2009) [30] BAI, X. M., VERNON, L. J., HOAGLAND, R. G., VOTER, A. F., NASTASI, M., and UBERUAGA, B. P. Role of atomic structure on grain boundary-defect interactions in Cu. Physical Review B, 85(21), 214103 (2012) [31] DENG, H. F. and BACON, D. J. Simulation of point defects and threshold displacements in pure Cu and a dilute Cu-Au alloy. Physical Review B, 48(14), 10022 (1993) [32] ANDERSON, P. M., HIRTH, J. P., and LOTHE, J. Theory of Dislocations, Cambridge University Press, Cambridge (2017) [33] MARTORANO, M. A., SANDIM, H. R. Z., FORTES, M. A., and PADILHA, A. F. Observations of grain boundary protrusions in static recrystallization of high-purity bcc metals. Scripta Materialia, 56(10), 903–906 (2007) [34] ZHOU, H., LI, X., QU, S., YANG, W., and GAO, H. A jogged dislocation governed strengthening mechanism in nanotwinned metals. Nano Letters, 14(9), 5075–5080 (2014) [35] ZHAO, Y., ZHANG, J., WANG, Y., WU, S., LIANG, X., WU, K., LIU, G., and SUN, J. The metastable constituent effects on size-dependent deformation behavior of nanolaminated micropillars: Cu/FeCoCrNi vs Cu/CuZr. Journal of Materials Science Technology, 68, 16–29 (2021) [36] XIAO, X., TERENTYEV, D., YU, L., BAKAEV, A., JIN, Z., and DUAN, H. Investigation of the thermo-mechanical behavior of neutron-irradiated Fe-Cr alloys by self-consistent plasticity theory. Journal of Nuclear Materials, 477, 123–133 (2016) [37] PENG, J., LI, L., LI, F., LIU, B., ZHEREBTSOV, S., FANG, Q., LI, J., STEPANOV, N., LIU, Y., LIU, F., and LIAW, P. K. The predicted rate-dependent deformation behaviour and multistage strain hardening in a model heterostructured body-centered cubic high entropy alloy. International Journal of Plasticity, 145, 103073 (2021) [38] LI, J., WENG, G. J., CHEN, S., and WU, X. On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity, 88, 89–107 (2017) |