[1] QIANG, L. I., YU, G. U., and WANG, H. The influence of temperature on flow-induced forces on quartzcrystal-microbalance sensors in a Chinese liquor identification electronic-nose:three-dimensional computational fluid dynamics simulation and analysis. Applied Mathematics and Mechanics (English Edition), 40(9), 1301-1312(2019) https://doi.org/10.1007/s10483-019-2512-9 [2] LÓPEZ, A., NICHOLLS, W., STICHLAND, M. T., and DEMPSTER, W. M. CFD study of jet impingement test erosion using Ansys Fluent and OpenFOAM. Computer Physics Communications, 197, 88-95(2015) [3] JORDAN, M. I. and MITCHELL, T. M. Machine learning:trends, perspectives, and prospects. Science, 349(6245), 255-260(2015) [4] KARNIADAKIS, G. E., KEVEREKIDIS, I. G., LU, L., PERDIKARIS, P., WANG, S. F., and YANG, L. Physics-informed machine learning. Nature Reviews Physics, 3(6), 422-440(2021) [5] LECUN, Y., BENGIO, Y., and HINTON, G. Deep learning. nature, 521(7553), 436-444(2015) [6] RAISSI, M., PERDIKARIS, P., and KARNIADAKIS, G. E. Physics-informed neural networks:a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. Journal of Computational Physics, 378, 686-707(2019) [7] RAISSI, M., YAZDANI, A., and KARNIADAKIS, G. E. Hidden fluid mechanics:learning velocity and pressure fields from flow visualizations. Science, 367(6481), 1026-1030(2020) [8] JIN, X. W., CAI, S. C., LI, H., and KARNIADAKIS, G. E. NSFnets (Navier-Stokes flow nets):physics-informed neural networks for the incompressible Navier-Stokes equations. Journal of Computational Physics, 426, 109951(2021) [9] CAI, S. Z., WANG, Z. C., FUEST, F., JIN, J. Y., CALLUM, G., and KARNIADAKIS, G. E. Flow over an espresso cup:inferring 3-D velocity and pressure fields from tomographic background oriented schlieren via physics-informed neural networks. Journal of Computational Physics, 915, A102(2021) [10] SUN, L. N., GAO, H., PAN, S. W., and WANG, J. X. Surrogate modeling for fluid flows based on physics-constrained deep learning without simulation data. Computer Methods in Applied Mechanics and Engineering, 361, 112732(2020) [11] RAO, C. P., SUN, H., and LIU, Y. Physics-informed deep learning for incompressible laminar flows. Theoretical and Applied Mechanics Letters, 10(3), 207-212(2020) [12] MCCLENNY, L. and BRAGA-NETO, U. Self-adaptive physics-informed neural networks using a soft attention mechanism. arXiv Preprint, arXiv:2009.04544(2020) https://doi.org/10.48550/arXiv.2009.04544 [13] BOTELLA, O. and PEYRET, R. Benchmark spectral results on the lid-driven cavity flow. Computers and Fluids, 27(4), 421-433(1998) [14] BISWAS, S. and KALITA, J. C. Topology of corner vortices in the lid-driven cavity flow:2D vis a vis 3D. Archive of Applied Mechanics, 90(3), 2201-2216(2020) [15] JAGTAP, A. D., KHARAZMI, E., and KARNIADAKIS, G. E. Conservative physics-informed neural networks on discrete domains for conservation laws:applications to forward and inverse problems. Computer Methods in Applied Mechanics and Engineering, 365, 113028(2020) [16] BAI, X., WANG, Y., and ZHANG, W. Applying physics informed neural network for flow data assimilation. Journal of Hydrodynamics, 32(6), 1050-1058(2020) [17] CHIU, P. H., WONG, J. C., OOI, C., DAO, M. H., and ONG, Y. S. CAN-PINN:a fast physics-informed neural network based on coupled automatic numerical differentiation method. Computer Methods in Applied Mechanics and Engineering, 395, 114909(2022) [18] WANG, Z., TRIANTAFYLLOU, M. S., CONSTANTINIDES, Y., and KARNIADAKIS, G. E. An entropy-viscosity large eddy simulation study of turbulent flow in a flexible pipe. Journal of Fluid Mechanics, 859, 691-730(2019) [19] CHEN, X. H., CHEN, R. L., WAN, Q., XU, R., and LIU, J. An improved data-free surrogate model for solving partial differential equations using deep neural networks. Scientific Reports, 11, 19507(2021) [20] WANG, Z., ZHENG, X., CHRYSSOSTOMIDIS, C., and KARNIADAKIS, G. E. A phase-field method for boiling heat transfer. Journal of Computational Physics, 435, 110239(2021) |