[1] SELESON, P., PARKS, M. L., GUNZBURGER, M., and LEHOUCQ, R. B. Peridynamics as an upscaling of molecular dynamics. Multiscale Modeling & Simulation, 8(1), 204-227(2009) [2] SILLING, S., EPTON, A., WECKNER, M., XU, O., and ASKARI, J. Peridynamic states and constitutive modeling. Journal of Elasticity, 88(2), 151-184(2007) [3] SILLING, S. Reformulation of elasticity theory for discontinuities and long-range forces. Journal of the Mechanics and Physics of Solids, 48(1), 175-209(2000) [4] BOBARU, F., SILLING, S. A., and JIANG, H. Peridynamic fracture and damage modeling of membranes and nanofiber networks. 11th International Conference on Fracture, Taylor & Francis, London (2005) [5] ASKARI, E., XU, J., and SILLING, S. Peridynamic analysis of damage and failure in composites. 44th AIAA Aerospace Sciences Meeting and Exhibit, American Institute of Aeronautics and Astronautics, AIAA 2006-88, Reston (2006) [6] NIKABDULLAH, N., AZIZI, M. A., ALEBRAHIM, R., and SINGH, S. S. K. The application of peridynamic method on prediction of viscoelastic materials behaviour. AIP Conference Proceedings, 1602(1), 357-363(2014) [7] PLIMPTON, S. Fast parallel algorithms for short-range molecular dynamics. Journal of Computational Physics, 117(1), 1-19(1995) [8] PARKS, M. L., LITTLEWOOD, D. J., MITCHELL, J. A., and SILLING, S. A. Peridigm User Guide, Tech. Report SAND2012-7800, Sandia National Laboratories, Albuquerque (2012) [9] SILLING, S. A. and ASKARI, E. A meshfree method based on the peridynamic model of solid mechanics. Computers & Structures, 83, 1526-1535(2005) [10] PARKS, M. L., SELESON, P., PLIMPTON, S. J., SILLING, S. A., and LEHOUCQ, R. B. Peridynamics with LAMMPS:a User Guide v$0.3$ Beta, Sandia Report, 3532(2011) [11] MITCHELL, J. A. A Non-local, Ordinary-state-based Viscoelasticity Model for Peridynamics, Sandia National Lab Report, 8064(2011) [12] KIM, M., WINOVICH, N., LIN, G., and JEONG, W. Peri-net:analysis of crack patterns using deep neural networks. Journal of Peridynamics and Nonlocal Modeling, 1(2), 131-142(2019) [13] GARNELO, M., SCHWARZ, J., ROSENBAUM, D., VIOLA, F., REZENDE, D. J., ESLAMI, S. M., and TEH, Y. W. Neural processes. arXiv Preprint, arXiv:1807.01622(2018) https://doi.org/10.48550/arXiv.1807.01622 [14] PARKS, M. L., LEHOUCQ, R. B., PLIMPTON, S. J., and SILLING, S. A. Implementing peridynamics within a molecular dynamics code. Computer Physics Communications, 179(11), 777-783(2008) [15] RASMUSSEN, C. E. Gaussian processes in machine learning. Advanced Lectures on Machine Learning, Springer, Berlin/Heidelberg, 63-71(2004) [16] PLIMPTON, S. J. Pizza.py (2022) http://www.cs.sandia.gov/sjplimp/pizza.html [17] AHRENS, J., GEVECI, B., and LAW, C. ParaView:an end-user tool for large data visualization. Visualization Handbook, Elsevier, Amsterdam (2005) [18] AYACHIT, U. The ParaView Guide$:$ a Parallel Visualization Application, Kitware, New York (2015) [19] VEDALDI, A. and LENC, K. MatConvNet:convolutional neural networks for MATLAB. Proceedings of the 23rd ACM International Conference on Multimedia, Association for Computing Machinery, New York, 689-692(2014) [20] PASZKE, A., GROSS, S., CHINTALA, S., CHANAN, G., YANG, E., DEVITO, Z., LIN, Z., DESMAISON, A., ANTIGA, L., and LERER, A. Automatic differentiation in PyTorch. NIPS 2017 Autodiff Workshop (2017) https://openreview.net/forum?id=BJJsrmfCZ [21] LECUN, Y., BOTTOU, L., BENGIO, Y., and HAFFNER, P. Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278-2324(1998) [22] GOODFELLOW, I., BENGIO, Y., COURVILLE, A., and BENGIO, Y. Deep Learning, Vol. 1, MIT Press, Cambridge (2016) [23] GERON, A. Hands-on Machine Learning with Scikit-Learn and TensorFlow:Concepts, Tools, and Techniques to Build Intelligent Systems, 'O'Reilly Media, Sebastopol (2017) [24] LECUN, Y., BENGIO, Y., and HINTON, G. Deep learning. nature, 521(7553), 436-444(2015) [25] KRIZHEVSKY, A., SUTSKEVER, I., and HINTON, G. E. ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60, 84-90(2017) [26] NASRABADI, N. M. Pattern recognition and machine learning. Journal of Electronic Imaging, 16(4), 049901(2007) |