1 |
KAWAI, S. and SHIMOYAMA, K. Kriging-model-based uncertainty quantification in computational fluid dynamics. 32nd AIAA Applied Aerodynamics Conference, American Institute of Aeronautics and Astronautics, Atlandta (2014)
|
2 |
RAHMAN, S. A polynomial dimensional decomposition for stochastic computing. International Journal for Numerical Methods in Engineering, 76 (13), 2091- 2116 (2008)
|
3 |
RAHMAN, S. Extended polynomial dimensional decomposition for arbitrary probability distributions. Journal of Engineering Mechanics, 135 (12), 1439- 1451 (2009)
|
4 |
WIENER, N. The homogeneous chaos. American Journal of Mathematics, 60 (4), 897- 936 (1938)
|
5 |
HEINKENSCHLOSS, M., KRAMER, B., TAKHTAGANOV, T., and WILLCOX, K. Conditional-value-at-risk estimation via reduced-order models. SIAM/ASA Journal on Uncertainty Quantification, 6 (4), 1395- 1423 (2018)
|
6 |
ABDAR, M., POURPANAH, F., HUSSAIN, S., REZAZADEGAN, D., LIU, L., GHAVAMZADEH, M., FIEGUTH, P., CAO, X., KHOSRAVI, A., ACHARYA, U. R., MAKARENKOV, V., and NAHAVANDI, S. A review of uncertainty quantification in deep learning: techniques, applications and challenges. Information Fusion, 76, 243- 297 (2021)
|
7 |
LEE, D., and RAHMAN, S. Practical uncertainty quantification analysis involving statistically dependent random variables. Applied Mathematical Modelling, 84, 324- 356 (2020)
|
8 |
NOH, Y., CHOI, K., and DU, L. Reliability-based design optimization of problems with correlated input variables using a Gaussian copula. Structural and Multidisciplinary Optimization, 38 (1), 1- 16 (2009)
|
9 |
RAHMAN, S. A polynomial chaos expansion in dependent random variables. Journal of Mathematical Analysis and Applications, 464 (1), 749- 775 (2018)
|
10 |
RAHMAN, S. Uncertainty quantification under dependent random variables by a generalized polynomial dimensional decomposition. Computer Methods in Applied Mechanics and Engineering, 344, 910- 937 (2019)
|
11 |
JAKEMAN, J. D., FRANZELIN, F., NARAYAN, A., ELDRED, M., and PLFÜGER, D. Polynomial chaos expansions for dependent random variables. Computer Methods in Applied Mechanics and Engineering, 351, 643- 666 (2019)
|
12 |
LEE, D., and RAHMAN, S. Robust design optimization under dependent random variables by a generalized polynomial chaos expansion. Structural and Multidisciplinary Optimization, 63 (5), 2425- 2457 (2021)
|
13 |
LEE, D., and RAHMAN, S. Reliability-based design optimization under dependent random variables by a generalized polynomial chaos expansion. Structural and Multidisciplinary Optimization, 65 (1), 21 (2022)
|
14 |
LEE, D. Stochastic Optimization for Design under Uncertainty with Dependent Random Variables, Ph. D. dissertation, The University of Iowa (2021)
|
15 |
GALBALLY, D., FIDKOWSKI, K., WILLCOX, K., and GHATTAS, O. Non-linear model reduction for uncertainty quantification in large-scale inverse problems. International Journal for Numerical Methods in Engineering, 81 (12), 1581- 1608 (2010)
|
16 |
CHEN, P. and SCHWAB, C. Model Order Reduction Methods in Computational Uncertainty Quantification, Springer International Publishing, Cham, 937–990 (2017)
|
17 |
FRÖHLICH, B., HOSE, D., DIETERICH, O., HANSS, M., and EBERHARD, P. Uncertainty quantification of large-scale dynamical systems using parametric model order reduction. Mechanical Systems and Signal Processing, 171, 108855 (2022)
|
18 |
GUYAN, R. J. Reduction of stiffness and mass matrices. AIAA Journal, 3 (2), 380 (1965)
|
19 |
PANAYIRCI, H., PRADLWARTER, H. J., and SCHUËLLER, G. I. Efficient stochastic structural analysis using Guyan reduction. Advances in Engineering Software, 42 (4), 187- 196 (2011)
|
20 |
EZVAN, O., BATOU, A., SOIZE, C., and GAGLIARDINI, L. Multilevel model reduction for uncertainty quantification in computational structural dynamics. Computational Mechanics, 59 (2), 219- 246 (2017)
|
21 |
ZHOU, K., and TANG, J. Uncertainty quantification in structural dynamic analysis using two-level Gaussian processes and Bayesian inference. Journal of Sound and Vibration, 412, 95- 115 (2018)
|
22 |
ZHOU, K., and TANG, J. Uncertainty quantification of mode shape variation utilizing multi-level multi-response Gaussian process. Journal of Vibration and Acoustics, 143 (1), 011003 (2020)
|
23 |
CHOI, H. S., KIM, J. G., DOOSTAN, A., and PARK, K. Acceleration of uncertainty propagation through Lagrange multipliers in partitioned stochastic method. Computer Methods in Applied Mechanics and Engineering, 362, 112837 (2020)
|
24 |
CHANG, S., and CHO, M. Dynamic-condensation-based reanalysis by using the Sherman-Morrison-Woodbury formula. AIAA Journal, 59 (3), 905- 911 (2021)
|
25 |
CACCIOLA, P., and MUSCOLINO, G. Reanalysis techniques in stochastic analysis of linear structures under stationary multi-correlated input. Probabilistic Engineering Mechanics, 26 (1), 92- 100 (2011)
|
26 |
LEE, J., and CHO, M. An interpolation-based parametric reduced order model combined with component mode synthesis. Computer Methods in Applied Mechanics and Engineering, 319, 258- 286 (2017)
|
27 |
LEE, J., and CHO, M. Efficient design optimization strategy for structural dynamic systems using a reduced basis method combined with an equivalent static load. Structural and Multidisciplinary Optimization, 58 (4), 1489- 1504 (2018)
|
28 |
LEE, J. A dynamic substructuring-based parametric reduced-order model considering the interpolation of free-interface substructural modes. Journal of Mechanical Science and Technology, 32 (12), 5831- 5838 (2018)
|
29 |
SCHUHMACHER, G., MURRA, I., WANG, L., LAXANDER, A., O'LEARY, O., and HEROLD, M. Multidisciplinary design optimization of a regional aircraft wing box. 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, American Institute of Aeronautics and Astronautics, Atlanta (2002)
|
30 |
SCHUHMACHER, G., STETTNER, M., ZOTEMANTEL, R., O'LEARY, O., and WAGNER, M. Optimization assisted structural design of a new military transport aircraft. 10th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, American Institute of Aeronautics and Astronautics, Albany (2004)
|
31 |
LEE, J. A parametric reduced-order model using substructural mode selections and interpolation. Computers & Structures, 212, 199- 214 (2019)
|
32 |
CAO, L., LIU, J., JIANG, C., and LIU, G. Optimal sparse polynomial chaos expansion for arbitrary probability distribution and its application on global sensitivity analysis. Computer Methods in Applied Mechanics and Engineering, 399, 115368 (2022)
|
33 |
LEE, D., and RAHMAN, S. High-dimensional stochastic design optimization under dependent random variables by a dimensionally decomposed generalized polynomial chaos expansion. International Journal for Uncertainty Quantification, 13 (4), 23- 59 (2023)
|