Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (6): 947-962.doi: https://doi.org/10.1007/s10483-024-3119-6
• Articles • Previous Articles Next Articles
N. IQBAL, J. CHOI, S. F. SHAH, C. LEE, S. LEE*()
Received:
2023-12-13
Online:
2024-06-03
Published:
2024-06-01
Contact:
S. LEE
E-mail:sjunlee@dgu.ac.kr
Supported by:
2010 MSC Number:
N. IQBAL, J. CHOI, S. F. SHAH, C. LEE, S. LEE. Mathematical modeling and simulations of stress mitigation by coating polycrystalline particles in lithium-ion batteries. Applied Mathematics and Mechanics (English Edition), 2024, 45(6): 947-962.
Fig. 1
Schematics of the model systems for the chemo-mechanical responses of NMC particles (a) without and (b) with considering the coating of the primary and secondary particles, where the arrow inside each primary particle shows the crystalline orientation of the corresponding primary particle (color online)"
1 | DING, Y., CANO, Z. P., YU, A., LU, J., and CHEN, Z. Automotive Li-ion batteries: current status and future perspectives. Electrochemical Energy Reviews, 2 (1), 1- 28 (2019) |
2 | LU, Z., MACNEIL, D. D., and DAHN, J. R. Layered cathode materials Li[NixLi(1/3-2x/3)Mn(2/3-x/3)]O2 for lithium-ion batteries. Electrochemical and Solid-State Letters, 4 (11), A191 (2001) |
3 | PARK, G. T., YOON, D. R., KIM, U. H., NAMKOONG, B., LEE, J., WANG, M. M., LEE, A. C., GU, X. W., CHUEH, W. C., YOON, C. S., and SUN, Y. K. Ultrafine-grained Ni-rich layered cathode for advanced Li-ion batteries. Energy & Environmental Science, 14 (12), 6616- 6626 (2021) |
4 | YABUUCHI,N., and OHZUKU, T. Novel lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for advanced lithium-ion batteries. Journal of Power Sources, 119-121, 171- 174 (2003) |
5 | GOODENOUGH,J. B., and PARK, K. S. The Li-ion rechargeable battery: a perspective. Journal of the American Chemical Society, 135 (4), 1167- 1176 (2013) |
6 | BOMMEL,A. V., and DAHN, J. R. Synthesis of spherical and dense particles of the pure hydroxide phase Ni1/3Mn1/3Co1/3(OH)2. Journal of The Electrochemical Society, 156 (5), A362 (2009) |
7 | BI, Y., TAO, J., WU, Y., LI, L., XU, Y., HU, E., WU, B., HU, J., WANG, C., ZHANG, J. G., QI, Y., and XIAO, J. Reversible planar gliding and microcracking in a single-crystalline Ni-rich cathode. Science, 370 (6522), 1313- 1317 (2020) |
8 | YAN, P., ZHENG, J., GU, M., XIAO, J., ZHANG, J. G., and WANG, C. M. Intragranular cracking as a critical barrier for high-voltage usage of layer-structured cathode for lithium-ion batteries. Nature Communications, 8, 14101 (2017) |
9 | NIE, L., CHEN, S., and LIU, W. Challenges and strategies of lithium-rich layered oxides for Li-ion batteries. Nano Research, 16 (1), 391- 402 (2022) |
10 | DE BIASI, L., KONDRAKOV, A. O., GEßWEIN, H., BREZESINSKI, T., HARTMANN, P., and JANEK, J. Between scylla and charybdis: balancing among structural stability and energy density of layered NCM cathode materials for advanced lithium-ion batteries. The Journal of Physical Chemistry C, 121 (47), 26163- 26171 (2017) |
11 | RYU, H. H., PARK, K. J., YOON, C. S., and SUN, Y. K. Capacity fading of Ni-rich Li[NixCoyMn1-x-y]O2 (0.6≤ x≤ 0.95) cathodes for high-energy-density lithium-ion batteries: bulk or surface degradation?. Chemistry of Materials, 30 (3), 1155- 1163 (2018) |
12 | LOU, S., LIU, Q., ZHANG, F., LIU, Q., YU, Z., MU, T., ZHAO, Y., BOROVILAS, J., CHEN, Y., GE, M., XIAO, X., LEE, W. K., YIN, G., YANG, Y., SUN, X., and WANG, J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries. Nature Communications, 11 (1), 5700 (2020) |
13 | ALLEN, J. M., WEDDLE, P. J., VERMA, A., MALLARAPU, A., USSEGLIO-VIRETTA, F., FINEGAN, D. P., COLCLASURE, A. M., MAI, W., SCHMIDT, V., FURAT, O., DIERCKS, D., TANIM, T., and SMITH, K. Quantifying the influence of charge rate and cathode-particle architectures on degradation of Li-ion cells through 3D continuum-level damage models. Journal of Power Sources, 512, 230415 (2021) |
14 | LI, S., JIANG, Z., HAN, J., XU, Z., WANG, C., HUANG, H., YU, C., LEE, S. J., PIANETTA, P., OHLDAG, H., QIU, J., LEE, J. S., LIN, F., ZHAO, K., and LIU, Y. Mutual modulation between surface chemistry and bulk microstructure within secondary particles of nickel-rich layered oxides. Nature Communications, 11 (1), 4433 (2020) |
15 | SUN, G., SUI, T., SONG, B., ZHENG, H., LU, L., and KORSUNSKY, A. M. On the fragmentation of active material secondary particles in lithium ion battery cathodes induced by charge cycling. Extreme Mechanics Letters, 9, 449- 458 (2016) |
16 | TIAN, H., GAO, L. T., and GUO, Z. S. Microstructural adjusting crack evolution of polycrystalline NCM particle during charge/discharge cycle. Journal of The Electrochemical Society, 169 (9), 090513 (2022) |
17 | ZHANG, Y., ZHAO, C., and GUO, Z. Simulation of crack behavior of secondary particles in Li-ion battery electrodes during lithiation/de-lithiation cycles. International Journal of Mechanical Sciences, 155, 178- 186 (2019) |
18 | XU, R., and ZHAO, K. Corrosive fracture of electrodes in Li-ion batteries. Journal of the Mechanics and Physics of Solids, 121, 258- 280 (2018) |
19 | SINGH,A., and PAL, S. Coupled chemo-mechanical modeling of fracture in polycrystalline cathode for lithium-ion battery. International Journal of Plasticity, 127, 102636 (2019) |
20 | TAGHIKHANI, K., WEDDLE, P. J., HOFFMAN, R. M., BERGER, J. R., and KEE, R. J. Electro-chemo-mechanical finite-element model of single-crystal and polycrystalline NMC cathode particles embedded in an argyrodite solid electrolyte. Electrochimica Acta, 460, 142585 (2023) |
21 | YUAN, C., LU, W., and XU, J. Electrochemical-mechanical coupling failure mechanism of composite cathode in all-solid-state batteries. Energy Storage Materials, 60, 102834 (2023) |
22 | WU, L., ZHANG, Y., JUNG, Y. G., and ZHANG, J. Three-dimensional phase field based finite element study on Li intercalation-induced stress in polycrystalline LiCoO2. Journal of Power Sources, 299, 57- 65 (2015) |
23 | BAI, Y., ZHAO, K., LIU, Y., STEIN, P., and XU, B. X. A chemo-mechanical grain boundary model and its application to understand the damage of Li-ion battery materials. Scripta Materialia, 183, 45- 49 (2020) |
24 | TAGHIKHANI, K. J., WEDDLE, P., BERGER, J., and KEE, R. J. Modeling coupled chemo-mechanical behavior of randomly oriented NMC811 polycrystalline Li-ion battery cathodes. Journal of The Electrochemical Society, 168 (8), 080511 (2021) |
25 | LI, H., ZHOU, P., LIU, F., LI, H., CHENG, F., and CHEN, J. Stabilizing nickel-rich layered oxide cathodes by magnesium doping for rechargeable lithium-ion batteries. Chemical Science, 10 (5), 1374- 1379 (2019) |
26 | YOON, C. S., CHOI, M. J., JUN, D. W., ZHANG, Q., KAGHAZCHI, P., KIM, K. H., and SUN, Y. K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries. Chemistry of Materials, 30 (5), 1808- 1814 (2018) |
27 | WU, F., ZHANG, X., ZHAO, T., LI, L., XIE, M., and CHEN, R. Multifunctional AlPO4 coating for improving electrochemical properties of low-cost Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 cathode materials for lithium-ion batteries. ACS Applied Materials & Interfaces, 7 (6), 3773- 3781 (2015) |
28 | HUANG, Y., CAO, S., XIE, X., WU, C., JAMIL, S., ZHAO, Q., CHANG, B., WANG, Y., and WANG, X. Improving the structure and cycling stability of Ni-rich layered cathodes by dual modification of yttrium doping and surface coating. ACS Applied Materials & Interfaces, 12 (17), 19483- 19494 (2020) |
29 | HOU, D., XU, Z., YANG, Z., KUAI, C., DU, Z., SUN, C. J., REN, Y., LIU, J., XIAO, X., and LIN, F. Effect of the grain arrangements on the thermal stability of polycrystalline nickel-rich lithium-based battery cathodes. Nature Communications, 13 (1), 3437 (2022) |
30 | WU, H., QIN, C., WANG, K., HAN, X., SUI, M., and YAN, P. Revealing two distinctive intergranular cracking mechanisms of Ni-rich layered cathode by cross-sectional scanning electron microscopy. Journal of Power Sources, 503, 230066 (2021) |
31 | BAO, W., QIAN, G., ZHAO, L., YU, Y., SU, L., CAI, X., ZHAO, H., ZUO, Y., ZHANG, Y., LI, H., PENG, Z., LI, L., and XIE, J. Simultaneous enhancement of interfacial stability and kinetics of single-crystal LiNi0.6Mn0.2Co0.2O2 through optimized surface coating and doping. Nano Letters, 20 (12), 8832- 8840 (2020) |
32 | FAN, X., HU, G., ZHANG, B., OU, X., ZHANG, J., ZHAO, W., JIA, H., ZOU, L., LI, P., and YANG, Y. Crack-free single-crystalline Ni-rich layered NCM cathode enable superior cycling performance of lithium-ion batteries. Nano Energy, 70, 104450 (2020) |
33 | JO, C. H., VORONINA, N., and MYUNG, S. T. Single-crystalline particle Ni-based cathode materials for lithium-ion batteries: strategies, status, and challenges to improve energy density and cyclability. Energy Storage Materials, 51, 568- 587 (2022) |
34 | KALLURI, S., YOON, M., JO, M., PARK, S., MYEONG, S., KIM, J., DOU, S. X., GUO, Z., and CHO, J. Surface engineering strategies of layered LiCoO2 cathode material to realize high-energy and high-voltage Li-ion cells. Advanced Energy Materials, 7 (1), 1601507 (2017) |
35 | YANG, H., WU, H. H., GE, M., LI, L., YUAN, Y., YAO, Q., CHEN, J., XIA, L., ZHENG, J., CHEN, Z., DUAN, J., KISSLINGER, K., ZENG, X. C., LEE, W. K., ZHANG, Q., and LU, J. Simultaneously dual modification of Ni-rich layered oxide cathode for high-energy lithium-ion batteries. Advanced Functional Materials, 29 (13), 1808825 (2019) |
36 | YAN, P., ZHENG, J., LIU, J., WANG, B., CHENG, X., ZHANG, Y., SUN, X., WANG, C., and ZHANG, J. G. Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries. Nature Energy, 3 (7), 600- 605 (2018) |
37 | LIU, X., ZHOU, X., LIU, Q., DIAO, J., ZHAO, C., LI, L., LIU, Y., XU, W., DAALI, A., HARDER, R., ROBINSON, I. K., DAHBI, M., ALAMI, J., CHEN, G., XU, G. L., and AMINE, K. Multiscale understanding of surface structural effects on high-temperature operational resiliency of layered oxide cathodes. Advanced Materials, 34 (4), 2107326 (2022) |
38 | XU, G. L., LIU, Q., LAU, K. K. S., LIU, Y., LIU, X., GAO, H., ZHOU, X., ZHUANG, M., REN, Y., LI, J., SHAO, M., OUYANG, M., PAN, F., CHEN, Z., AMINE, K., and CHEN, G. Building ultraconformal protective layers on both secondary and primary particles of layered lithium transition metal oxide cathodes. Nature Energy, 4 (6), 484- 494 (2019) |
39 | IQBAL,N., and LEE, S. Mechanical failure analysis of graphite anode particles with PVDF binders in Li-ion batteries. Journal of The Electrochemical Society, 165 (9), A1961- A1970 (2018) |
40 | ZHANG, X., SHYY, W., and MARIE-ASTRY, A. Numerical simulation of intercalation-induced stress in Li-ion battery electrode particles. Journal of The Electrochemical Society, 154 (10), A910 (2007) |
41 | IQBAL,N., and LEE, S. Anisotropic model to describe chemo-mechanical response of Ni-rich cathode materials. International Journal of Mechanical Sciences, 269, 109034 (2024) |
42 | WHEELER, J. The effects of stress on reactions in the earth: sometimes rather mean. usually normal, always important. Journal of Metamorphic Geology, 36 (4), 439- 461 (2018) |
43 | IQBAL, N., HAQ, I. U., and LEE, S. Chemo-mechanical model predicted critical SOCs for the mechanical stability of electrode materials in lithium-ion batteries. International Journal of Mechanical Sciences, 216, 107034 (2022) |
44 | HAN, S., PARK, J., LU, W., and SASTRY, A. M. Numerical study of grain boundary effect on Li+ effective diffusivity and intercalation-induced stresses in Li-ion battery active materials. Journal of Power Sources, 240, 155- 167 (2013) |
45 | XU, R., YANG, Y., YIN, F., LIU, P., CLOETENS, P., LIU, Y., LIN, F., and ZHAO, K. Heterogeneous damage in Li-ion batteries: experimental analysis and theoretical modeling. Journal of the Mechanics and Physics of Solids, 129, 160- 183 (2019) |
46 | KIM, D., FRANCO-GONZALEZ, J. F., and ZOZOULENKO, I. How long are polymer chains in poly(3, 4-ethylenedioxythiophene): tosylate films? an insight from molecular dynamics simulations. The Journal of Physical Chemistry B, 125 (36), 10324- 10334 (2021) |
47 | LANG, U., RUST, P., SCHOBERLE, B., and DUAL, J. Piezoresistive properties of PEDOT: PSS. Microelectronic Engineering, 86 (3), 330- 334 (2009) |
48 | QU, J., OUYANG, L., KUO, C., and MARTIN, D. C. Stiffness, strength and adhesion characterization of electrochemically deposited conjugated polymer films. Acta Biomaterialia, 31, 114- 121 (2016) |
49 | ROHTLAID, K., NGUYEN, G. T. M., SOYER, C., CATTAN, E., VIDAL, F., and PLESSE, C. Poly(3, 4-ethylenedioxythiophene): poly(styrene sulfonate)/polyethylene oxide electrodes with improved electrical and electrochemical properties for soft microactuators and microsensors. Advanced Electronic Materials, 5 (4), 1800948 (2019) |
50 | SUN, H., and ZHAO, K. Electronic structure and comparative properties of Li(NixMnyCoz)O2 cathode materials. The Journal of Physical Chemistry C, 121 (11), 6002- 6010 (2017) |
51 | IQBAL, N., CHOI, J., LEE, C., AYUB, H. M. U., KIM, J., KIM, M., KIM, Y., MOON, D., and LEE, S. Effects of diffusion-induced nonlinear local volume change on the structural stability of NMC cathode materials of lithium-ion batteries. Mathematics, 10 (24), 4697 (2022) |
52 | WEI, Y., ZHENG, J., CUI, S., SONG, X., SU, Y., DENG, W., WU, Z., WANG, X., WANG, W., RAO, M., LIN, Y., WANG, C., AMINE, K., and PAN, F. Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2. Journal of the American Chemical Society, 137 (26), 8364- 8367 (2015) |
53 | HUANG, X., ZHU, W., YAO, J., BU, L., LI, X., TIAN, K., LU, H., QUAN, C., XU, S., XU, K., JIANG, Z., ZHANG, X., GAO, L., and ZHAO, J. Suppressing structural degradation of Ni-rich cathode materials towards improved cycling stability enabled by a Li2MnO3 coating. Journal of Materials Chemistry A, 8 (34), 17429- 17441 (2020) |
54 | CHENG, E. J., HONG, K., TAYLOR, N. J., CHOE, H., WOLFENSTINE, J., and SAKAMOTO, J. Mechanical and physical properties of LiNi0.33Mn0.33Co0.33O2 (NMC).. Journal of the European Ceramic Society, 37 (9), 3213- 3217 (2017) |
55 | MISTRY, A., JUAREZ-ROBLES, D., STEIN, M., SMITH, K., and MUKHERJEE, P. P. Analysis of long-range interaction in lithium-ion battery electrodes. Journal of Electrochemical Energy Conversion and Storage, 13 (3), 031006 (2016) |
56 | IQBAL, N., ALI, Y., and LEE, S. Chemo-mechanical response of composite electrode systems with multiple binder connections. Electrochimica Acta, 364, 137312 (2020) |
[1] | Shijing GAO, Lele ZHANG, Jinxi LIU, Guoquan NIE, Weiqiu CHEN. Indentation behavior of a semi-infinite piezoelectric semiconductor under a rigid flat-ended cylindrical indenter [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(4): 649-662. |
[2] | Shengyi TANG, Xubin PENG, Huadong YONG. Numerical simulation of the mechanical behavior of superconducting tape in conductor on round core cable using the cohesive zone model [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1511-1532. |
[3] | Haoran BAI, Zhanyu WANG, Sangyu LUO, Zhaoliang QU, Daining FANG. A modified single edge V-notched beam method for evaluating surface fracture toughness of thermal barrier coatings [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(5): 693-710. |
[4] | Bo RUI, Bo LU, Yicheng SONG, Junqian ZHANG. A pre-strain strategy of current collectors for suppressing electrode debonding in lithium-ion batteries [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(4): 547-560. |
[5] | Xin ZHANG, Minghao ZHAO, Cuiying FAN, C. S. LU, Huayang DANG. Three-dimensional interfacial fracture analysis of a one-dimensional hexagonal quasicrystal coating [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1901-1920. |
[6] | Jie SU, Hongxia SONG, Liaoliang KE, S. M. AIZIKOVICH. The size-dependent elastohydrodynamic lubrication contact of a coated half-plane with non-Newtonian fluid [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(7): 915-930. |
[7] | Minghao ZHAO, Cuiying FAN, C. S. LU, Huayang DANG. Interfacial fracture analysis for a two-dimensional decagonal quasi-crystal coating layer structure [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1633-1648. |
[8] | M. KARIMI, A. GHASSEMI, A. ATRIAN, M. VAHABI. Compensation of stress intensity factors in hollow cylinders containing several cracks under torsion by electro-elastic coating [J]. Applied Mathematics and Mechanics (English Edition), 2019, 40(9): 1335-1360. |
[9] | H. TEIMOORI, R. T. FAAL, R. DAS. Saint-Venant torsion analysis of bars with rectangular cross-section and effective coating layers [J]. Applied Mathematics and Mechanics (English Edition), 2016, 37(2): 237-252. |
[10] | Yang SUN;Wenjuan WANG;Binbin LI;Mabao LIU. Investigation on behavior of crack penetration/deflection at interfaces in intelligent coating system [J]. Applied Mathematics and Mechanics (English Edition), 2015, 36(4): 465-474. |
[11] | WANG Zhi-Liang;LIN Song-Piao;ZHOU Zhe-Wei. Spatio-temporal instability of two-layer liquid film at small Reynolds numbers [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(1): 1-12. |
[12] | YUAN Ying-long;LU Zi-xing . MODULUS PREDICTION AND DISCUSSION OF REINFORCED SYNTACTIC FOAMS WITH COATED HOLLOW SPHERICAL INCLUSIONS [J]. Applied Mathematics and Mechanics (English Edition), 2004, 25(5): 528-535. |
[13] | Lu Zixing. THE EFFECTIVE MODULI OF COMPOSITE REINFORCED BY SPHERICAL COATING PARTICLES [J]. Applied Mathematics and Mechanics (English Edition), 1998, 19(10): 997-999. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||