Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (3): 573-590.doi: https://doi.org/10.1007/s10483-025-3229-8
Previous Articles Next Articles
Jiayun CHEN1, Bochuan JIANG1, Qi ZHAO1, Yuhang LI1, Yafei YIN1,†(), Xuanqing FAN2
Received:
2024-09-12
Revised:
2025-01-10
Published:
2025-03-04
Contact:
Yafei YIN, E-mail: yinyafei@buaa.edu.cnSupported by:
2010 MSC Number:
Jiayun CHEN, Bochuan JIANG, Qi ZHAO, Yuhang LI, Yafei YIN, Xuanqing FAN. Electrothermal analysis of radiofrequency tissue ablation with flexible electrodes on large-curvature myocardium surfaces. Applied Mathematics and Mechanics (English Edition), 2025, 46(3): 573-590.
[1] | TOWNSEND, C. M. Sabiston Textbook of Surgery: The Biological Basis of Modern Surgical Practice, 21st ed., Elsevier, City of Saint Louis, 217 (2021) |
[2] | KOTTKAMP, H., HINDRICKS, G., PÖNISCH, C., BERTAGNOLLI, L., MOSER, F., HILBERT, S., RIEGER, A., and SOMMER, P. Global multielectrode contact-mapping plus ablation with a single catheter in patients with atrial fibrillation: global AF study. Journal of Cardiovascular Electrophysiology, 30, 2248–2255 (2019) |
[3] | REDDY, V. Y., SCHILLING, R., GRIMALDI, M., HORTON, R., NATALE, A., RIVA, S., TONDO, C., KUCK, K. H., NEUZIL, P., MCINNIS, K., BISHARA, M., ZHANG, B., GOVARI, A., ABDELAAL, A., and MANSOUR, M. Pulmonary vein isolation with a novel multielectrode radiofrequency balloon catheter that allows directionally tailored energy delivery: short-term outcomes from a multicenter first-in-human study (RADIANCE). Circulation : Arrhythmia and Electrophysiology, 12, e007541 (2019) |
[4] | DHILLON, G. S., HONARBAKHSH, S., DI MONACO, A., COLING, A. E., LENKA, K., PIZZAMIGLIO, F., HUNTER, R. J., HORTON, R., MANSOUR, M., NATALE, A., REDDY, V., GRIMALDI, M., NEUZIL, P., TONDO, C., and SCHILLING, R. J. Use of a multi-electrode radiofrequency balloon catheter to achieve pulmonary vein isolation in patients with paroxysmal atrial fibrillation: 12-month outcomes of the radiance study. Journal of Cardiovascular Electrophysiology, 31, 1259–1269 (2020) |
[5] | XUE, Z., JIN, T., XU, S., BAI, K., HE, Q., ZHANG, F., CHENG, X., JI, Z., PANG, W., SHEN, Z., SONG, H., SHUAI, Y., and ZHANG, Y. H. Assembly of complex 3D structures and electronics on curved surfaces. Science Advances, 8, 692 (2022) |
[6] | SANDHU, A. and NGUYEN, D. T. Forging ahead: update on radiofrequency ablation technology and techniques. Journal of Cardiovascular Electrophysiology, 31, 360–369 (2020) |
[7] | HABIBI, M., BERGER, R. D., and CALKINS, H. Radiofrequency ablation: technological trends, challenges, and opportunities. EP Europace, 23, 511–519 (2021) |
[8] | AMATRIAIN, A., PARRA, I., RUBIO, G., and VALERO, E. Mathematical modeling of thermal ablation treatments in heart arrhythmias. 14th WCCM-ECCOMAS Congress (eds. CHINESTA, F., ABGRALL, R., ALLIX, O., and KALISKE, M.), Scipedia, Virtual (2021) |
[9] | AMATRIAIN CARBALLO, A. Mathematical Modeling and Numerical Simulation of Thermal Ablation Treatments in Heart Arrhythmias, M. Sc. dissertation, Complutense University of Madrid, 49–50 (2019) |
[10] | HUMPHREY, J. D. Continuum thermomechanics and the clinical treatment of disease and injury. Applied Mechanics Reviews, 56(2), 231–260 (2003) |
[11] | XU, F., LU, T. J., SEFFEN, K. A., and NG, E. Y. K. Mathematical modeling of skin bioheat transfer. Applied Mechanics Reviews, 62(5), 050801 (2009) |
[12] | LIN, M., GENIN, G. M., XU, F., and LU, T. Thermal pain in teeth: electrophysiology governed by thermomechanics. Applied Mechanics Reviews, 66(3), 030801 (2014) |
[13] | GUPTA, P. and SRIVASTAVA, A. Non-Fourier transient thermal analysis of biological tissue phantoms subjected to high intensity focused ultrasound. International Journal of Heat and Mass Transfer, 136, 1052–1063 (2019) |
[14] | SINGH, G., KUMAR, N., and AVTI, P. K. Computational evaluation of effectiveness for intratumoural injection strategies in magnetic nanoparticle assisted thermotherapy. International Journal of Heat and Mass Transfer, 148, 119129 (2020) |
[15] | TOPOL, H., DEMIRKOPARAN, H., and PENCE, T. J. Fibrillar collagen: a review of the mechanical modeling of strain-mediated enzymatic turnover. Applied Mechanics Reviews, 73(5), 050802 (2021) |
[16] | PREECHAPHONKUL, W. and RATTANADECHO, P. The comparative of the performance for predicted thermal models during microwave ablation process using a slot antenna. Case Studies in Thermal Engineering, 25, 100908 (2021) |
[17] | HELLMICH, C., UKAJ, N., SMEETS, B., VAN OOSTERWYCK, H., FILIPOVIC, N., ZELAYA-LAINEZ, L., KALLIAUER, J., and SCHEINER, S. Hierarchical biomechanics: concepts, bone as prominent example, and perspectives beyond. Applied Mechanics Reviews, 74(3), 030802 (2022) |
[18] | SELMI, M., BAJAHZAR, A., and BELMABROUK, H. Effects of target temperature on thermal damage during temperature-controlled MWA of liver tumor. Case Studies in Thermal Engineering, 31, 101821 (2022) |
[19] | GUNJAL, A., SRIVASTAVA, A., and ATREY, M. D. Multiple cryoprobe placement strategy for a single freeze cryosurgery planning. Case Studies in Thermal Engineering, 34, 101992 (2022) |
[20] | SHAO, Y. L., LEO, H. L., and CHUA, K. J. Studying of the thermal performance of a hybrid cryo-RFA treatment of a solid tumor. International Journal of Heat and Mass Transfer, 122, 410–420 (2018) |
[21] | IRASTORZA, R. M., GONZALEZ-SUAREZ, A., PÉREZ, J. J., and BERJANO, E. Differences in applied electrical power between full thorax models and limited-domain models for RF cardiac ablation. International Journal of Hyperthermia, 37, 677–687 (2020) |
[22] | YAN, S., GU, K., WU, X., and WANG, W. Computer simulation study on the effect of electrode-tissue contact force on thermal lesion size in cardiac radiofrequency ablation. International Journal of Hyperthermia, 37, 37–48 (2020) |
[23] | SINGH, S. and MELNIK, R. Computational modeling of cardiac ablation incorporating electrothermomechanical interactions. Journal of Engineering and Science in Medical Diagnostics and Therapy, 3, 041004 (2020) |
[24] | PÉREZ, J. J., GONZÁLEZ-SUÁREZ, A., NADAL, E., and BERJANO, E. Thermal impact of replacing constant voltage by low-frequency sine wave voltage in RF ablation computer modeling. Computer Methods and Programs in Biomedicine, 195, 105673 (2020) |
[25] | BARNOON, P. and BAKHSHANDEHFARD, F. Thermal management in a biological tissue in order to destroy tissue under local heating process. Case Studies in Thermal Engineering, 26, 101105 (2021) |
[26] | KHO, A. S. K., OOI, E. H., FOO, J. J., and OOI, E. T. The effects of vaporisation, condensation and diffusion of water inside the tissue during saline-infused radiofrequency ablation of the liver: a computational study. International Journal of Heat and Mass Transfer, 194, 123062 (2022) |
[27] | WONGCHADAKUL, P., DATTA, A. K., and RATTANADECHO, P. Natural convection effects on heat transfer in a porous tissue in 3-D radiofrequency cardiac ablation. International Journal of Heat and Mass Transfer, 204, 123832 (2023) |
[28] | BERJANO, E. J. Theoretical modeling for radiofrequency ablation: state-of-the-art and challenges for the future. BioMedical Engineering OnLine, 5, 24 (2006) |
[29] | MOLINA, J. A. L., RIVERA, M. J., TRUJILLO, M., and BERJANO, E. J. Effect of the thermal wave in radiofrequency ablation modeling: an analytical study. Physics in Medicine & Biology, 53, 1447–1462 (2008) |
[30] | LÓPEZ MOLINA, J. A., RIVERA, M. J., TRUJILLO, M., and BERJANO, E. J. Thermal modeling for pulsed radiofrequency ablation: analytical study based on hyperbolic heat conduction. Medical Physics, 36, 1112–1119 (2009) |
[31] | GONZÁLEZ-SUÁREZ, A., PÉREZ, J. J., IRASTORZA, R. M., D’AVILA, A., and BERJANO, E. Computer modeling of radiofrequency cardiac ablation: 30 years of bioengineering research. Computer Methods and Programs in Biomedicine, 214, 106546 (2022) |
[32] | EREZ, A. and SHITZER, A. Controlled destruction and temperature distributions in biological tissues subjected to monoactive electrocoagulation. Journal of Biomechanical Engineering, 102, 42–49 (1980) |
[33] | HAINES, D. E. and WATSON, D. D. Tissue heating during radiofrequency catheter ablation: a thermodynamic model and observations in isolated perfused and superfused canine right ventricular free wall. Pacing and Clinical Electrophysiology, 12(6), 962–976 (1989) |
[34] | CUI, Y., LI, Y., and XING, Y. Sweat effects on the thermal analysis of epidermal electronic devices integrated with human skin. International Journal of Heat and Mass Transfer, 127, 97–104 (2018) |
[35] | HOBINY, A. D. and ABBAS, I. A. Theoretical analysis of thermal damages in skin tissue induced by intense moving heat source. International Journal of Heat and Mass Transfer, 124, 1011–1014 (2018) |
[36] | YIN, Y., LI, Y., and LI, M. Thermal analysis of the flexible electronics affixed on large curvature myocardium surface. International Journal of Heat and Mass Transfer, 147, 118983 (2020) |
[37] | KIM, D. H., LU, N., GHAFFARI, R., KIM, Y. S., LEE, S. P., XU, L., WU, J., KIM, R. H., SONG, J., LIU, Z., VIVENTI, J., DE GRAFF, B., ELOLAMPI, B., MANSOUR, M., SLEPIAN, M. J., HWANG, S., MOSS, J. D., WON, S. M., HUANG, Y., LITT, B., and ROGERS, J. A. Materials for multifunctional balloon catheters with capabilities in cardiac electrophysiological mapping and ablation therapy. Nature Materials, 10, 316–323 (2011) |
[38] | KIM, D. H., GHAFFARI, R., LU, N., WANG, S., LEE, S. P., KEUM, H., D’ANGELO, R., KLINKER, L., SU, Y., LU, C., KIM, Y. S., AMEEN, A., LI, Y., ZHANG, Y., DE GRAFF, B., HSU, Y. Y., LIU, Z., RUSKIN, J., XU, L., LU, C., OMENETTO, F. G., HUANG, Y., MANSOUR, M., SLEPIAN, M. J., and ROGERS, J. A. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy. Proceedings of the National Academy of Sciences, 109, 19910–19915 (2012) |
[39] | KOH, A., GUTBROD, S. R., MEYERS, J. D., LU, C., WEBB, R. C., SHIN, G., LI, Y., KANG, S. K., HUANG, Y., EFIMOV, I. R., and ROGERS, J. A. Ultrathin injectable sensors of temperature, thermal conductivity, and heat capacity for cardiac ablation monitoring. Advanced Healthcare Materials, 5, 373–381 (2016) |
[40] | CONSIGLIERI, L. Analytical solutions in the modeling of the local RF ablation. Journal of Mechanics in Medicine and Biology, 16, 1650071 (2016) |
[41] | HU, M., FENG, Z., CHU, Y., and LI, Y. Electrothermal analysis of radiofrequency tissue ablation with injectable flexible electrodes considering bio-heat transfer. Theoretical and Applied Mechanics Letters, 11, 100258 (2021) |
[42] | AIJAZ, M., DAR, J. G., ALMANJAHIE, I. M., and ALSHAHRANI, F. Temperature distribution in tumour tissue during targeted destruction by heat: a hyperbolic bioheat equation approach. Case Studies in Thermal Engineering, 50, 103491 (2023) |
[43] | KAOUK, Z., SHAHIDI, A. V., SAVARD, P., and MOLIN, F. Modelling of myocardial temperature distribution during radio-frequency ablation. Medical & Biological Engineering & Computing, 34, 165–170 (1996) |
[44] | SHAHIDI, A. V. and SAVARD, P. A finite element model for radiofrequency ablation of the myocardium. IEEE Transactions on Biomedical Engineering, 41, 963–968 (1994) |
[45] | KIM, T. I., JUNG, Y. H., SONG, J., KIM, D., LI, Y., KIM, H. S., SONG, I. S., WIERER, J. J., PAO, H. A., HUANG, Y., and ROGERS, J. A. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small, 8(11), 1643–1649 (2012) |
[46] | ANDREANO, A. and BRACE, C. L. A comparison of direct heating during radiofrequency and microwave ablation in ex vivo liver. CardioVascular and Interventional Radiology, 36(2), 505–511 (2013) |
[47] | DOSS, J. D. Calculation of electric fields in conductive media. Medical Physics, 9, 566–573 (1982) |
[48] | SINGH, S. and MELNIK, R. Thermal ablation of biological tissues in disease treatment: a review of computational models and future directions. Electromagnetic Biology and Medicine, 39, 49–88 (2020) |
[49] | PENNES, H. H. Analysis of tissue and arterial blood temperatures in the resting human forearm. Journal of Applied Physiology, 1(2), 93–122 (1948) |
[50] | WOOD, M., GOLDBERG, S., LAU, M., GOEL, A., ALEXANDER, D., HAN, F., and FEINSTEIN, S. Direct measurement of the lethal isotherm for radiofrequency ablation of myocardial tissue. Circulation: Arrhythmia and Electrophysiology, 4(3), 373–378 (2011) |
[51] | WANG, J., MENG, X., LI, H., CUI, Y., HAN, J., and XU, C. Prospective randomized comparison of left atrial and biatrial radiofrequency ablation in the treatment of atrial fibrillation. European Journal of Cardiothoracic Surgery, 35(1), 116–122 (2009) |
[52] | CAPPATO, R., CALKINS, H., CHEN, S. A., DAVIES, W., IESAKA, Y., KALMAN, J., KIM, Y. H., KLEIN, G., NATALE, A., PACKER, D., SKANES, A., AMBROGI, F., and BIGANZOLI, E. Updated worldwide survey on the methods, efficacy, and safety of catheter ablation for human atrial fibrillation. Circulation: Arrhythmia and Electrophysiology, 3, 32–38 (2010) |
[53] | WHITAKER, J., RAJANI, R., CHUBB, H., GABRAWI, M., VARELA, M., WRIGHT, M., NIEDERER, S., and O’NEILL, M. D. The role of myocardial wall thickness in atrial arrhythmogenesis. EP Europace, 18(12), 1758–1772 (2016) |
[54] | HO, S. Y., SANCHEZ-QUINTANA, D., CABRERA, J. A., and ANDERSON, R. H. Anatomy of the left atrium: implications for radiofrequency ablation of atrial fibrillation. Journal of Cardiovascular Electrophysiology, 10, 1525–1533 (1999) |
[55] | LIU, Y., LIU, Q., YANG, Y., ZHANG, C., YIN, H., WU, J., YAO, L., JIN, L., YANG, J., FENG, L., and XIE, R. Effect of radiofrequency catheter ablation on left atrial structure and function in patients with different types of atrial fibrillation. Scientific Reports, 12, 9511 (2022) |
[56] | BOUZAS-MOSQUERA, A., BROULLON, F. J., ALVAREZ-GARCIA, N., MENDEZ, E., PETEIRO, J., GANDARA-SAMBADE, T., PRADA, O., MOSQUERA, V. X., and CASTRO-BEIRAS, A. Left atrial size and risk for all-cause mortality and ischemic stroke. Canadian Medical Association Journal, 183(10), E657–E664 (2011) |
[57] | JAIN, M. K. and WOLF, P. D. A three-dimensional finite element model of radiofrequency ablation with blood flow and its experimental validation. Annals of Biomedical Engineering, 28, 1075–1084 (2000) |
[58] | XU, F., LU, T. J., and SEFFEN, K. A. Biothermomechanics of skin tissues. Journal of the Mechanics and Physics of Solids, 56(5), 1852–1884 (2008) |
[59] | LAAKSONEN, M. S., KALLIOKOSKI, K. K., LUOTOLAHTI, M., KEMPPAINEN, J., TERIIS, M., KYROLAINEN, H., NUUTILA, P., and KNUUTI, J. Myocardial perfusion during exercise in endurance-trained and untrained humans. American Journal of Physiology — Regulatory, Integrative and Comparative Physiology, 293(2), R837–R843 (2006) |
[1] | CHENG He-ming;WANG Hong-gang;XIE Jian-bin. CALCULATION OF COUPLED PROBLEM BETWEEN TEMPERATURE AND PHASE TRANSFORMATION DURING GAS QUENCHING IN HIGH PRESSURE [J]. Applied Mathematics and Mechanics (English Edition), 2006, 27(3): 305-311 . |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||