Applied Mathematics and Mechanics (English Edition) ›› 2025, Vol. 46 ›› Issue (6): 1011-1028.doi: https://doi.org/10.1007/s10483-025-3258-9
Previous Articles Next Articles
Weixing ZHANG, Dongshuo YANG, Xiangying GUO†()
Received:
2025-01-19
Revised:
2025-04-07
Published:
2025-06-05
Contact:
Xiangying GUO, E-mail: eagle2008guo@yeah.netSupported by:
2010 MSC Number:
Weixing ZHANG, Dongshuo YANG, Xiangying GUO. Low-frequency vibration suppression of meta-beam withsoftening nonlinearity. Applied Mathematics and Mechanics (English Edition), 2025, 46(6): 1011-1028.
[19] | BANERJEE, A. Influence of the torsional vibration of the periodically attached perpendicular beam resonator on the flexural band of a Euler-Bernoulli beam. Physics Letters A, 384(29), 126757 (2020) |
[20] | JIN, Y., SHI, Y., YU, G. C., WEI, G. T., HU, B., and WU, L. Z. A multifunctional honeycomb metastructure for vibration suppression. International Journal of Mechanical Sciences, 188, 105964 (2020) |
[21] | LI, J. Q., FAN, X. L., and LI, F. M. Numerical and experimental study of a sandwich-like metamaterial plate for vibration suppression. Composite Structures, 238, 111969 (2020) |
[22] | RUAN, Y. D., LIANG, X., HUA, X. Y., ZHANG, C., XIA, H., and LI, C. Isolating low-frequency vibration from power systems on a ship using spiral phononic crystals. Ocean Engineering, 225, 108804 (2021) |
[23] | WANG, G., CHEN, S. B., and WEN, J. H. Low-frequency locally resonant band gaps induced by arrays of resonant shunts with Antoniou's circuit: experimental investigation on beams. Smart Materials and Structures, 20(1), 015026 (2011) |
[24] | PENG, H., PAI, P. F., and DENG, H. G. Acoustic multi-stopband metamaterial plates design for broadband elastic wave absorption and vibration suppression. International Journal of Mechanical Sciences, 103, 104–114 (2015) |
[25] | FAN, X. L., LI, J. Q., ZHANG, X. Y., and LI, F. M. Multi-bandgaps metamaterial plate design using complex mass-beam resonator. International Journal of Mechanical Sciences, 236, 107742 (2022) |
[26] | WANG, G., WAN, S. K., HONG, J., LIU, S., and LI, X. H. Enhancement of the vibration attenuation characteristics in local resonance metamaterial beams: theory and experiment. Mechanical Systems and Signal Processing, 188, 110036 (2023) |
[27] | GAO, C., HALIM, D., and YI, X. S. Study of bandgap property of a bilayer membrane-type metamaterial applied on a thin plate. International Journal of Mechanical Sciences, 184, 105708 (2020) |
[28] | EL-BORGI, S., FERNANDES, R., RAJENDRAN, P., YAZBECK, R., BOYD, J. G., and LAGOUDAS, D. C. Multiple bandgap formation in a locally resonant linear metamaterial beam: theory and experiments. Journal of Sound and Vibration, 488, 115647 (2020) |
[29] | ZEGA, V., SILVA, P. B., GEERS, M. G. D., and KOUZNETSOVA, V. G. Experimental proof of emergent subharmonic attenuation zones in a nonlinear locally resonant metamaterial. Scientific Reports, 10(1), 12041 (2020) |
[30] | SHENG, P., FANG, X., YU, D. L., and WEN, J. H. Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate. Applied Mathematics and Mechanics (English Edition), 45(10), 1749–1772 (2024) https://doi.org/10.1007/s10483-024-3165-7 |
[31] | BAE, M. H. and OH, J. H. Amplitude-induced bandgap: new type of bandgap for nonlinear elastic metamaterials. Journal of the Mechanics and Physics of Solids, 139, 103930 (2020) |
[32] | HU, B., FANG, X., CHENG, L., WEN, J. H., and YU, D. L. Attenuation of impact waves in a nonlinear acoustic metamaterial beam. Nonlinear Dynamics, 111(17), 15801–15816 (2023) |
[33] | KHAJEHTOURIAN, R. and HUSSEIN, M. I. Dispersion characteristics of a nonlinear elastic metamaterial. AIP Advances, 4(12), 124308 (2014) |
[34] | WANG, K., ZHOU, J. X., XU, D. L., and OUYANG, H. J. Lower band gaps of longitudinal wave in a one-dimensional periodic rod by exploiting geometrical nonlinearity. Mechanical Systems and Signal Processing, 124, 664–678 (2019) |
[35] | ZHOU, J. X., DOU, L. L., WANG, K., XU, D. L., and OUYANG, H. J. A nonlinear resonator with inertial amplification for very low-frequency flexural wave attenuations in beams. Nonlinear Dynamics, 96(1), 647–665 (2019) |
[36] | XUE, Y., LI, J. Q., WANG, Y., and LI, F. M. Tunable nonlinear band gaps in a sandwich-like meta-plate. Nonlinear Dynamics, 106(4), 2841–2857 (2021) |
[37] | FANG, X., WEN, J. H., BONELLO, B., YIN, J. F., and YU, D. L. Ultra-low and ultra-broad-band nonlinear acoustic metamaterials. Nature Communications, 8, 1288 (2017) |
[38] | FANG, X., WEN, J. H., YU, D. L., and YIN, J. F. Bridging-coupling band gaps in nonlinear acoustic metamaterials. Physical Review Applied, 10(5), 054049 (2018) |
[39] | YANG, D. S., GUO, X. Y., ZHANG, W. X., and CAO, D. X. Non-linear dynamics and bandgap control in magneto-rheological elastomers metamaterials with inertial amplification. Thin-Walled Structures, 204, 112237 (2024) |
[40] | ZHAO, B., THOMSEN, H. R., PU, X. B., FANG, S. T., LAI, Z. H., VAN DAMME, B., BERGAMINI, A., CHATZI, E., and COLOMBI, A. A nonlinear damped metamaterial: wideband attenuation with nonlinear bandgap and modal dissipation. Mechanical Systems and Signal Processing, 208, 111079 (2024) |
[1] | SOONG, T. T. and SPENCER, B. F. Supplemental energy dissipation: state-of-the-art and state-of-the-practice. Engineering Structures, 24(3), 243–259 (2002) |
[2] | DING, H. and JI, J. C. Vibration control of fluid-conveying pipes: a state-of-the-art review. Applied Mathematics and Mechanics (English Edition), 44(9), 1423–1456 (2023) https://doi.org/10.1007/s10483-023-3023-9 |
[3] | RAFIEE, M., NITZSCHE, F., and LABROSSE, M. Dynamics, vibration and control of rotating composite beams and blades: a critical review. Thin-Walled Structures, 119, 795–819 (2017) |
[4] | GUO, Z. K., JIANG, S., SHEN, Y. J., JIANG, G. Q., XIAO, B. Y., XU, Q., and LI, M. Nonlinear dynamic analysis and vibration reduction of two sandwich beams connected by a joint with clearance. Mechanical Systems and Signal Processing, 223, 111828 (2025) |
[5] | LU, Z., WANG, Z. X., ZHOU, Y., and LU, X. L. Nonlinear dissipative devices in structural vibration control: a review. Journal of Sound and Vibration, 423, 18–49 (2018) |
[6] | ZHANG, W. X., ZHANG, W., and GUO, X. Y. Vertical vibration control using nonlinear energy sink with inertial amplifier. Applied Mathematics and Mechanics (English Edition), 44(10), 1721–1738 (2023) https://doi.org/10.1007/s10483-023-3036-8 |
[7] | JIANG, Y., ZHANG, W., ZHANG, Y. F., and LU, S. F. Nonlinear vibrations of four-degrees of freedom for piezoelectric functionally graded graphene-reinforced laminated composite cantilever rectangular plate with PPF control strategy. Thin-Walled Structures, 188, 110830 (2023) |
[8] | CHEN, J. E., ZHANG, W., YAO, M. H., LIU, J., and SUN, M. Vibration reduction in truss core sandwich plate with internal nonlinear energy sink. Composite Structures, 193, 180–188 (2018) |
[9] | LIU, Z. Y., ZHANG, X. X., MAO, Y. W., ZHU, Y. Y., YANG, Z. Y., CHAN, C. T., and SHENG, P. Locally resonant sonic materials. Science, 289(5485), 1734–1736 (2000) |
[10] | ASKARI, M., HUTCHINS, D. A., THOMAS, P. J., ASTOLFI, L., WATSON, R. L., ABDI, M., RICCI, M., LAURETI, S., NIE, L. Z., FREEAR, S., WILDMAN, R., TUCK, C., CLARKE, M., WOODS, E., and CLARE, A. T. Additive manufacturing of metamaterials: a review. Additive Manufacturing, 36, 101562 (2020) |
[11] | CAI, C. X., WANG, Z. H., CHU, Y. Y., LIU, G. S., and XU, Z. The phononic band gaps of Bragg scattering and locally resonant pentamode metamaterials. Journal of Physics D: Applied Physics, 50(41), 415105 (2017) |
[41] | XIA, Y. W., RUZZENE, M., and ERTURK, A. Bistable attachments for wideband nonlinear vibration attenuation in a metamaterial beam. Nonlinear Dynamics, 102(3), 1285–1296 (2020) |
[42] | ZHANG, J. Y., ZHANG, J. Y., ZHANG, B. H., AN, Y. M., YANG, X., HU, N., MA, L. F., PENG, Y., and WANG, B. Broadband multifrequency vibration attenuation of an acoustic metamaterial beam with two-degree-of-freedom nonlinear bistable absorbers. Mechanical Systems and Signal Processing, 212, 111264 (2024) |
[43] | XUE, Y., LI, J. Q., WANG, Y., and LI, F. M. Broadband vibration attenuation in nonlinear meta-structures with magnet coupling mechanism: theory and experiments. Communications in Nonlinear Science and Numerical Simulation, 127, 107543 (2023) |
[44] | ZHAO, T., YANG, Z. C., and TIAN, W. Tunable nonlinear metastructure with periodic bi-linear oscillators for broadband vibration suppression. Thin-Walled Structures, 191, 110975 (2023) |
[45] | ZOU, D. L., LIU, G. Y., RAO, Z. S., TAN, T., ZHANG, W. M., and LIAO, W. H. A device capable of customizing nonlinear forces for vibration energy harvesting, vibration isolation, and nonlinear energy sink. Mechanical Systems and Signal Processing, 147, 107101 (2021) |
[46] | MAO, X. Y., YIN, M. M., DING, H., GENG, X. F., SHEN, Y. J., and CHEN, L. Q. Modeling, analysis, and simulation of X-shape quasi-zero-stiffness-roller vibration isolators. Applied Mathematics and Mechanics (English Edition), 43(7), 1027–1044 (2022) https://doi.org/10.1007/s10483-022-2871-6 |
[47] | LI, M. and DING, H. A vertical track nonlinear energy sink. Applied Mathematics and Mechanics (English Edition), 45(6), 931–946 (2024) https://doi.org/10.1007/s10483-024-3127-6 |
[48] | WANG, H. L., LI, M., ZENG, Y. C., and DING, H. Experimental, theoretical and optimization studies on multimode vibration reduction of floating raft system based on NES cells. Ocean Engineering, 311, 118897 (2024) |
[49] | ZOU, D. L., CHEN, K. Y., RAO, Z. S., CAO, J. Y., and LIAO, W. H. Design of a quad-stable piezoelectric energy harvester capable of programming the coordinates of equilibrium points. Nonlinear Dynamics, 108(2), 857–871 (2022) |
[50] | SUGINO, C., LEADENHAM, S., RUZZENE, M., and ERTURK, A. On the mechanism of bandgap formation in locally resonant finite elastic metamaterials. Journal of Applied Physics, 120(13), 134501 (2016) |
[12] | JIA, Z., CHEN, Y. Y., YANG, H. X., and WANG, L. F. Designing phononic crystals with wide and robust band gaps. Physical Review Applied, 9(4), 044021 (2018) |
[13] | XIAO, Y., WEN, J. H., and WEN, X. S. Flexural wave band gaps in locally resonant thin plates with periodically attached spring-mass resonators. Journal of Physics D: Applied Physics, 45(19), 195401 (2012) |
[14] | QIAN, D. H. and SHI, Z. Y. Bandgap properties in locally resonant phononic crystal double panel structures with periodically attached spring-mass resonators. Physics Letters A, 380(41), 3319–3325 (2016) |
[15] | AN, X. Y., YUAN, X. F., HOU, X. X., and FAN, H. L. Low frequency vibration attenuation of meta-orthogrid sandwich panel with high load-bearing capacity. Composite Structures, 305, 116560 (2023) |
[16] | ZHANG, Y., FAN, X. L., LI, J. Q., LI, F. M., YU, G. C., ZHANG, R. B., and YUAN, K. F. Low-frequency vibration insulation performance of the pyramidal lattice sandwich metamaterial beam. Composite Structures, 278, 114719 (2021) |
[17] | SONG, Y. B., FENG, L. P., LIU, Z. B., WEN, J. H., and YU, D. L. Suppression of the vibration and sound radiation of a sandwich plate via periodic design. International Journal of Mechanical Sciences, 150, 744–754 (2019) |
[18] | CHEN, D. K., ZI, H., LI, Y. G., and LI, X. Y. Low frequency ship vibration isolation using the band gap concept of sandwich plate-type elastic metastructures. Ocean Engineering, 235, 109460 (2021) |
[1] | Qi JIA, Dianlong YU, Donghai HAN, Jihong WEN. Lightweight multifunctional metamaterial with low-frequency vibroacoustic reduction and load-bearing performances [J]. Applied Mathematics and Mechanics (English Edition), 2025, 46(3): 403-422. |
[2] | Xingzhong WANG, Shiteng RUI, Shaokun YANG, Weiquan ZHANG, Fuyin MA. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1209-1224. |
[3] | Xingjian DONG, Shuo WANG, Anshuai WANG, Liang WANG, Zhaozhan ZHANG, Yuanhao TIE, Qingyu LIN, Yongtao SUN. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1841-1856. |
[4] | Qingqing LIU, Shenlong WANG, Ge YAN, Hu DING, Haihua WANG, Qiang SHI, Xiaohong DING, Huijie YU. A human-sensitive frequency band vibration isolator for heavy-duty truck seats [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1733-1748. |
[5] | Jiawei MAO, Hao GAO, Junzhe ZHU, Penglin GAO, Yegao QU. Analytical modeling of piezoelectric meta-beams with unidirectional circuit for broadband vibration attenuation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1665-1684. |
[6] | Guangdong SUI, Shuai HOU, Xiaofan ZHANG, Xiaobiao SHAN, Chengwei HOU, Henan SONG, Weijie HOU, Jianming LI. A bio-inspired spider-like structure isolator for low-frequency vibration [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1263-1286. |
[7] | Kai WANG, Jiaxi ZHOU, Dongguo TAN, Zeyi LI, Qida LIN, Daolin XU. A brief review of metamaterials for opening low-frequency band gaps [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1125-1144. |
[8] | Bo YAN, Ning YU, Chuanyu WU. A state-of-the-art review on low-frequency nonlinear vibration isolation with electromagnetic mechanisms [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(7): 1045-1062. |
[9] | Runqing CAO, Zhijian WANG, Jian ZANG, Yewei ZHANG. Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1873-1886. |
[10] | Hai-ren WANG;Hong-ping HU;Jia-shi YANG;Yuan-tai HU. Spiral piezoelectric transducer in torsional motion as low-frequency power harvester [J]. Applied Mathematics and Mechanics (English Edition), 2013, 34(5): 589-596. |
[11] | Sun Dongning;Wu Wangyi . THE INFLUENCE OF LOW-FREQUENCY VARYING MAGNETIC FIELD ON THE PULSATILE FLOW IN A RIGID ROUND TUBE [J]. Applied Mathematics and Mechanics (English Edition), 1997, 18(2): 121-127. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||