Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (10): 1841-1856.doi: https://doi.org/10.1007/s10483-024-3168-7
• Articles • Previous Articles
Xingjian DONG1,*(), Shuo WANG2,3, Anshuai WANG2,3, Liang WANG2,3, Zhaozhan ZHANG2,3, Yuanhao TIE4, Qingyu LIN2,3, Yongtao SUN2,3
Received:
2024-03-29
Online:
2024-10-03
Published:
2024-09-27
Contact:
Xingjian DONG
E-mail:donxij@sjtu.edu.cn
Supported by:
2010 MSC Number:
Xingjian DONG, Shuo WANG, Anshuai WANG, Liang WANG, Zhaozhan ZHANG, Yuanhao TIE, Qingyu LIN, Yongtao SUN. Low-frequency bandgap and vibration suppression mechanism of a novel square hierarchical honeycomb metamaterial. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1841-1856.
Fig. 6
(a) The fourth dispersion surface; (b) the iso-frequency contour lines of the fourth dispersion surface; (c)-(e) the group velocity diagrams at frequencies of 144.0 Hz, 155.0 Hz, and 165.9 Hz; (f)-(h) the wave propagation directions at frequencies of 144.0 Hz, 155.0 Hz, and 165.9 Hz (color online)"
Fig. 7
(a) The sixth dispersion surface; (b) the iso-frequency contour lines of the sixth dispersion surface; (c)-(e) the group velocity diagrams at frequencies of 225.9 Hz, 229.9 Hz, and 231.9 Hz; (f)-(h) the wave propagation directions at frequencies of 225.9 Hz, 229.9 Hz, and 231.9 Hz (color online)"
Fig. 8
(a) The seventh dispersion surface; (b) the iso-frequency contour lines of the seventh dispersion surface; (c)-(e) the group velocity diagrams at frequencies of 317.0 Hz, 348.8 Hz, and 364.7 Hz; (f)-(h) the wave propagation directions at frequencies of 317.0 Hz, 348.8 Hz, and 364.7 Hz (color online)"
1 | JINFENG, R., LIN, W., and PEI, L. Summary of research on supporting facilities and structure vibration and noise reduction of high-rise buildings. IOP Conference Series: Earth and Environmental Science, 791 (1), 012023 (2021) |
2 | LIN, X., PAN, F., YANG, K., GUAN, J., DING, B., LIU, Y., YANG, K., LIU, B., and CHEN, Y. A stair-building strategy for tailoring mechanical behavior of re-customizable metamaterials. Advanced Functional Materials, 31 (37), 2101808 (2021) |
3 | MAYANI, M. G., HERRAIZ-MARTÍNEZ, F. J., DOMINGO, J. M., and GIANNETTI, R. Resonator-based microwave metamaterial sensors for instrumentation: survey, classification, and performance comparison. IEEE Transactions on Instrumentation and Measurement, 70, 1- 14 (2021) |
4 | KONE, T. C., GHINET, S., PANNETON, R., and GREWA, A. Optimization of metamaterials with complex neck shapes for aircraft cabin noise improvement. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 263 (2), 3963- 3974 (2021) |
5 | PALLAVI, M., KUMAR, P., ALI, T., and SHENOY, S. B. Modeling of a negative refractive index metamaterial unit-cell and array for aircraft surveillance applications. IEEE Access, 10, 99790- 99812 (2022) |
6 | KONE, T. C., GHINET, S., PANNETON, R., LALY, Z., MECHEFSKE, C., and GREWAL, A. Control and broadening of multiple noise frequencies using an assembly of sub-metamaterials connected by membranes for aircraft noise mitigation. INTER-NOISE and NOISE-CON Congress and Conference Proceedings, 265 (3), 4607- 4615 (2023) |
7 | AMER, Y. A., EL-SAYED, A. T., and AHMED, E. E. Vibration reduction of a non-linear ship model using positive position feedback controllers. International Journal of Dynamics and Control, 10 (2), 409- 426 (2022) |
8 | LIU, S., ZHANG, X., and WANG, R. Analysis of influence of imbricated damping rubber block on vibration and noise reduction of high-speed railway wheels. Journal of Applied Acoustics, 39 (1), 128- 132 (2020) |
9 | HAN, D., ZHANG, G., ZHAO, J., YAO, H., and LIU, H. Study on band gap and sound insulation characteristics of an adjustable helmholtz resonator. Applied Sciences, 12 (9), 4512 (2022) |
10 | NAGAYA, K., KURUSU, A., IKAI, S., and SHITANI, Y. Vibration control of a structure by using a tunable absorber and an optimal vibration absorber under auto-tuning control. Journal of Sound and Vibration, 228, 773- 792 (1999) |
11 | LIN, S., ZHANG, Y., LIANG, Y., LIU, Y., LIU, C., and YANG, Z. Bandgap characteristics and wave attenuation of metamaterials based on negative-stiffness dynamic vibration absorbers. Journal of Sound and Vibration, 502, 116088 (2021) |
12 | SIGALAS, M., and ECONOMOU, E. N. Band structure of elastic waves in two dimensional systems. Solid State Communications, 86 (3), 141- 143 (1993) |
13 | KUSHWAHA, M. S., HALEVI, P., DOBRZYNSKI, L., and DJAFARI-ROUHANI, B. Acoustic band structure of periodic elastic composites. Physical Review Letters, 71 (13), 2022- 2025 (1993) |
14 | VAN BELLE, L., CLAEYS, C., DECKERS, E., and DESMET, W. On the impact of damping on the dispersion curves of a locally resonant metamaterial: modelling and experimental validation. Journal of Sound and Vibration, 409, 1- 23 (2017) |
15 | LIU, X., and FAN, Y. Band structure characteristics of T-square fractal phononic crystals. Chinese Physics B, 22 (3), 036101 (2013) |
16 | WU, Z., LI, F., and ZHANG, C. Band-gap analysis of a novel lattice with a hierarchical periodicity using the spectral element method. Journal of Sound and Vibration, 421, 246- 260 (2018) |
17 | LU, M. H., ZHANG, C., FENG, L., ZHAO, J., CHEN, Y. F., MAO, Y. W., ZI, J., ZHU, Y. Y., ZHU, S. N., and MING, N. B. Negative birefraction of acoustic waves in a sonic crystal. Nature Materials, 6 (10), 744- 748 (2007) |
18 | ZHANG, S., YIN, L., and FANG, N. Focusing ultrasound with an acoustic metamaterial network. Physical Review Letters, 102 (19), 194301 (2009) |
19 | YU, G., QIU, Y., LI, Y., WANG, X., and WANG, N. Underwater acoustic stealth by a broadband 2-bit coding metasurface. Physical Review Applied, 15 (6), 064064 (2021) |
20 | ZHANG, J., LU, G., and YOU, Z. Large deformation and energy absorption of additively manufactured auxetic materials and structures: a review. Composites Part B: Engineering, 201, 108340 (2020) |
21 | WANG, Q., LI, Z., ZHANG, Y., CUI, S., YANG, Z., and LU, Z. Ultra-low density architectured metamaterial with superior mechanical properties and energy absorption capability. Composites Part B: Engineering, 202, 108379 (2020) |
22 | QUAN, C., HAN, B., HOU, Z., ZHANG, Q., TIAN, X., and LU, T. J. 3D printed continuous fiber reinforced composite auxetic honeycomb structures. Composites Part B: Engineering, 187, 107858 (2020) |
23 | TAO, R., JI, L., LI, Y., WAN, Z., HU, W., WU, W., LIAO, B., MA, L., and FANG, D. 4D printed origami metamaterials with tunable compression twist behavior and stress-strain curves. Composites Part B: Engineering, 201, 108344 (2020) |
24 | CORREA, D. M., KLATT, T., CORTES, S., HABERMAN, M., KOVAR, D., and SEEPERSAD, C. Negative stiffness honeycombs for recoverable shock isolation. Rapid Prototyping Journal, 21 (2), 193- 200 (2015) |
25 | LIU, X. N., HU, G. K., SUN, C. T., and HUANG, G. L. Wave propagation characterization and design of two-dimensional elastic chiral metacomposite. Journal of Sound and Vibration, 330, 2536- 2553 (2011) |
26 | GOLDSBERRY, B. M., and HABERMAN, M. R. Negative stiffness honeycombs as tunable elastic metamaterials. Journal of Applied Physics, 123 (9), 091711 (2018) |
27 | CHEN, Y., and WANG, Z. W. In-plane elasticity of the re-entrant auxetic hexagonal honeycomb with hollow-circle joint. Aerospace Science and Technology, 123, 107432 (2022) |
28 | WANG, H., LU, Z., YANG, Z., and LI, X. A novel re-entrant auxetic honeycomb with enhanced in-plane impact resistance. Composite Structures, 208, 758- 770 (2019) |
29 | ZHANG, Y., XU, X., FANG, J., HUANG, W., and WANG, J. Load characteristics of triangular honeycomb structures with self-similar hierarchical features. Engineering Structures, 257, 114114 (2022) |
30 | WANG, Z., DENG, J., LIU, K., and TAO, Y. Hybrid hierarchical square honeycomb with widely tailorable effective in-plane elastic modulus. Thin-Walled Structures, 171, 108816 (2022) |
31 | WANG, Y., YU, Y., WANG, C., ZHOU, G., KARAMOOZIAN, A., and ZHAO, W. On the out-of-plane ballistic performances of hexagonal, reentrant, square, triangular and circular honeycomb panels. International Journal of Mechanical Sciences, 173, 105402 (2020) |
32 | CHEN, Y., and WANG, L. Harnessing structural hierarchy to design stiff and lightweight phononic crystals. Extreme Mechanics Letters, 9, 91- 96 (2016) |
33 | CHEN, Y., JIA, Z., and WANG, L. Hierarchical honeycomb lattice metamaterials with improved thermal resistance and mechanical properties. Composite Structures, 152, 395- 402 (2016) |
34 | LIM, Q. J., WANG, P., KOH, S. J. A., KHOO, E. H., and BERTOLDI, K. Wave propagation in fractal-inspired self-similar beam lattices. Applied Physics Letters, 107 (22), 221911 (2015) |
35 | WANG, Z. G., SHI, C., DING, S. S., and LIANG, X. F. Crashworthiness of innovative hexagonal honeycomb-like structures subjected to out-of-plane compression. Journal of Central South University, 27 (2), 621- 628 (2020) |
36 | KARAKOÇ, A., and TACIROGLU, E. Effects of morphology and topology on the effective stiffness of chiral cellular materials in the transverse plane. Advances in Materials Science and Engineering, 2016, 6534648 (2016) |
37 | MINIACI, M., KRUSHYNSKA, A., GLIOZZI, A. S., KHERRAZ, N., BOSIA, F., and PUGNO, N. M. Design and fabrication of bioinspired hierarchical dissipative elastic metamaterials. Physical Review Applied, 10 (2), 024012 (2018) |
38 | ZHU, Z., DENG, Z., and DU, J. Elastic wave propagation in hierarchical honeycombs with woodpile-like vertexes. Journal of Vibration and Acoustics, 141 (4), 041020 (2019) |
39 | SUN, P., ZHANG, Z., GUO, H., LIU, N., and WANG, Y. Hierarchical square honeycomb metamaterials with low-frequency broad bandgaps and flat energy bands characteristics. Journal of Applied Physics, 128 (23), 235102 (2020) |
40 | LI, S., HAN, S., ZHENG, H., HAN, Q., and LI, C. Hierarchical design and vibration suppression of the hexachiral hybrid acoustic metamaterial. Applied Acoustics, 224, 110145 (2024) |
41 | YAN, G., LI, Y., WANG, Y., YIN, G., and YAO, S. Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation. Aerospace Science and Technology, 145, 108872 (2024) |
42 | ZHENG, H., HAN, S., LI, S., HAN, Q., and LI, C. A novel multi-resonator honeycomb metamaterial with enhanced impact mitigation. European Journal of Mechanics A/Solids, 105, 105272 (2024) |
43 |
WANG, S., WANG, A. S., WU, Y. S., LI, X. F., SUN, Y. T., ZHANG, Z. Z., DING, Q., AYALEW, G. D., MA, Y. X., and LIN, Q. Y. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial. Applied Mathematics and Mechanics (English Edition), 45 (7), 1261- 1278 (2024)
doi: 10.1007/s10483-024-3156-8 |
[1] | Shuo WANG, Anshuai WANG, Yansen WU, Xiaofeng LI, Yongtao SUN, Zhaozhan ZHANG, Qian DING, G. D. AYALEW, Yunxiang MA, Qingyu LIN. Ultra-wide band gap and wave attenuation mechanism of a novel star-shaped chiral metamaterial [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1261-1278. |
[2] | Long ZHAO, Zeqi LU, Hu DING, Liqun CHEN. A viscoelastic metamaterial beam for integrated vibration isolation and energy harvesting [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1243-1260. |
[3] | Zhou HU, Zhibo WEI, Yan CHEN, Rui ZHU. Reconfigurable mechanism-based metamaterials for ternary-coded elastic wave polarizers and programmable refraction control [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1225-1242. |
[4] | Xingzhong WANG, Shiteng RUI, Shaokun YANG, Weiquan ZHANG, Fuyin MA. A low-frequency pure metal metamaterial absorber with continuously tunable stiffness [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1209-1224. |
[5] | Wei WEI, Feng GUAN, Xin FANG. A low-frequency and broadband wave-insulating vibration isolator based on plate-shaped metastructures [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1171-1188. |
[6] | Changqi CAI, Chenjie ZHU, Fengyi ZHANG, Jiaojiao SUN, Kai WANG, Bo YAN, Jiaxi ZHOU. Modeling and analysis of gradient metamaterials for broad fusion bandgaps [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1155-1170. |
[7] | Yuxin YAO, Yuansheng MA, Fang HONG, Kai ZHANG, Tingting WANG, Haijun PENG, Zichen DENG. On Klein tunneling of low-frequency elastic waves in hexagonal topological plates [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1139-1154. |
[8] | Chao WANG, Honggang ZHAO, Yang WANG, Jie ZHONG, Dianlong YU, Jihong WEN. Topology optimization of chiral metamaterials with application to underwater sound insulation [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1119-1138. |
[9] | Yabin JING, Lifeng WANG, Yuqiang GAO. Mass-spring model for elastic wave propagation in multilayered van der Waals metamaterials [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1107-1118. |
[10] | M. SAFI, M. VAKILIFARD, M. J. MAHMOODI. Frequency-dependent viscoelasticity effects on the wave attenuation performance of multi-layered periodic foundations [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(3): 407-424. |
[11] | Jianguo CUI, Tianzhi YANG, Wenju HAN, Liang LI, Muqing NIU, Liqun CHEN. Tunable topological interface states via a parametric system in composite lattices with/without symmetric elements [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(12): 2055-2074. |
[12] | Yu ZHANG, Daming NIE, Xuyao MAO, Li LI. A thermodynamics-consistent spatiotemporally-nonlocal model for microstructure-dependent heat conduction [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1929-1948. |
[13] | Jinhui LIU, Yu XUE, Zhihong GAO, A. O. KRUSHYNSKA, Jinqiang LI. Actively tunable sandwich acoustic metamaterials with magnetorheological elastomers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1875-1894. |
[14] | Donghai HAN, Qi JIA, Yuanyu GAO, Qiduo JIN, Xin FANG, Jihong WEN, Dianlong YU. Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1821-1840. |
[15] | Jianing LIU, Jinqiang LI, Ying WU. Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1807-1820. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||