Applied Mathematics and Mechanics (English Edition) ›› 2024, Vol. 45 ›› Issue (10): 1821-1840.doi: https://doi.org/10.1007/s10483-024-3166-8
• Articles • Previous Articles Next Articles
Donghai HAN1,2, Qi JIA1,2, Yuanyu GAO1,2, Qiduo JIN1,2, Xin FANG1,2, Jihong WEN1,2, Dianlong YU1,2,*()
Received:
2024-03-31
Online:
2024-10-03
Published:
2024-09-27
Contact:
Dianlong YU
E-mail:dianlongyu@vip.sina.com
Supported by:
2010 MSC Number:
Donghai HAN, Qi JIA, Yuanyu GAO, Qiduo JIN, Xin FANG, Jihong WEN, Dianlong YU. Local resonance metamaterial-based integrated design for suppressing longitudinal and transverse waves in fluid-conveying pipes. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1821-1840.
1 | WANG, Y. K., and WANG, L. Parametric resonance of a cantilevered pipe conveying fluid subjected to distributed motion constraints. Journal of Theoretical and Applied Mechanics, 51 (2), 558- 568 (2019) |
2 | RAHIM, A., ROUHOLLAH, D. F., and MOHAMMAD, R. On the stability of rotating pipes conveying fluid in annular liquid medium. Journal of Sound and Vibration, 494, 115891 (2021) |
3 | WEN, H. B., YANG, Y. R., LI, Y. D., and TAO, J. Three-dimensional vibration analysis of curved pipes conveying fluid by straight pipe-curve fluid element. Applied Mathematical Modelling, 121, 270- 303 (2023) |
4 | JI, W. H., SUN, W., DU, D. X., and CAO, Y. H. Dynamics modeling and vibration transmission visualization of fluid-conveying series pipe system based on FEM-TMM. Ocean Engineering, 280, 114693 (2023) |
5 | JIN, Q. D., and REN, Y. R. Review on mechanics of fluid-conveying nanotubes. International Journal of Mechanical Sciences, 195, 104007 (2024) |
6 | WANG, D. H., SUN, W., GAO, Z. H., and LI, H. Vibration response analysis and hoop layout optimization of spatial pipeline under random excitation. Aircraft Engineering and Aerospace Technology, 94 (8), 1242- 1251 (2022) |
7 | GAO, P. X., TAO, Y., ZHANG, Y. L., WANG, J., and ZHAI, J. Y. Vibration analysis and control technologies of hydraulic pipeline system in aircraft: a review. Chinese Journal of Aeronautics, 34 (4), 83- 114 (2021) |
8 | MATTA, L. M., and SZASZ, G. Vibration and fatigue failures at pipeline facilities. Proceedings of the 12th International Pipeline Conference, American Society of Mechanical Engineers, Calgary, (2018) |
9 | BEKETOV, S. B., KUNINA, P. S., BUNYAKIN, A. V., and DUBOV, V. V. Failure of industrial pipelines due to low-frequency vibrations. Russian Journal of Nondestructive Testing, 53, 669- 676 (2017) |
10 | REN, Y., LI, L., and JIN, Q. D. Vibration and snapthrough of fluid-conveying graphene-reinforced composite pipes under low-velocity impact. AIAA Journal, 59 (12), 5091- 5105 (2021) |
11 | WU, J., LI, C. J., ZHENG, S. Y., and GAO, J. H. Study on fluid-structure coupling vibration of compressor pipeline. Shock and Vibration, 2019 (1), 8624324 (2019) |
12 | NETO, H. R., CAVAKINI, J. A., VEDOVOTO, J. M., NETO, A. S., and RADE, D. A. Influence of seabed proximity on the vibration responses of a pipeline accounting for fluid-structure interaction. Mechanical Systems and Signal Processing, 114, 224- 238 (2019) |
13 | FAN, X., ZHU, C. A., MAO, X. Y., and DING, H. Resonance regulation on a hydraulic pipe via boundary excitations. International Journal of Mechanical Sciences, 252, 108375 (2023) |
14 | HUSSEIN, D. S., and AL-WAILY, M. Active vibration control analysis of pipes conveying fluid rested on different supports using state-space method. International Journal of Energy and Environment, 10 (6), 329- 344 (2019) |
15 | ZHANG, Y. L., LIU, X. F., RONG, W. C., GAO, P. X., YU, T., HAN, H. W., and XU, L. J. Vibration and damping analysis of pipeline system based on partially piezoelectric active constrained layer damping treatment. Materials, 14 (5), 1209 (2021) |
16 | JIN, Q. D., and REN, Y. R. Coupled resonance of FGM nanotubes transporting super-critical high-speed pulsatile flow under forced vibration: size-dependence and bifurcation topology. Computer Methods in Applied Mechanics and Engineering, 404, 115834 (2023) |
17 | WANG, W. X., DALTON, D., HUA, X. G., WANG, X. Y., CHEN, Z. Q., and SONG, G. B. Experimental study on vibration control of a submerged pipeline model by eddy current tuned mass damper. Applied Sciences, 7 (10), 987 (2017) |
18 | HOSSEINI, R. S., AHMADI, A., and ZANGANEH, R. Fluid-structure interaction during water hammer in a pipeline with different performance mechanisms of viscoelastic supports. Journal of Sound and Vibration, 487, 115527 (2020) |
19 |
DING, H., and JI, J. C. Vibration control of fluid-conveying pipes: a state-of-the-art review. Applied Mathematics and Mechanics (English Edition), 44 (9), 1423- 1456 (2023)
doi: 10.1007/s10483-023-3023-9 |
20 | BALAJI, P. S., and KARTHIK SELVAKUMAR, K. Applications of nonlinearity in passive vibration control: a review. Journal of Vibration Engineering and Technologies, 9, 183- 213 (2021) |
21 | CARRELLA, A., BRENNAN, M. J., WATERS, T. P., and LOPES, V. Force and displacement transmissibility of a nonlinear isolator with high-static-low-dynamic-stiffness. International Journal of Mechanical Sciences, 55 (1), 22- 29 (2012) |
22 | HU, B., ZHANG, Z. F., YU, D. L., LIU, J. W., and ZHU, F. L. Broadband bandgap and shock vibration properties of acoustic metamaterial fluid-filled pipes. Journal of Applied Physics, 128, 205103 (2020) |
23 | MOHD, I., ANIL, K., and ORESTE, S. B. Vibration control of a periodic piping system employing metamaterial concept. 2021 Fifteenth International Congress on Artificial Materials for Novel Wave Phenomena (Metamaterials), IEEE, New York, (2021) |
24 |
YAO, S. J., CHAI, Y. J., YANG, X. W., and LI, Y. M. Elastic twisting metamaterial for perfect longitudinal-torsional wave mode conversion. Applied Mathematics and Mechanics (English Edition), 44 (4), 515- 524 (2023)
doi: 10.1007/s10483-023-2978-7 |
25 | FRONK, M. D., FANG, L., PACKO, P., and LEAMY, M. J. Elastic wave propagation in weakly nonlinear media and metamaterials: a review of recent developments. Nonlinear Dynamics, 111 (12), 10709- 10741 (2023) |
26 | LU, M., FENG, L., and CHEN, Y. F. Phononic crystals and acoustic metamaterials. Materials Today, 12 (12), 34- 42 (2009) |
27 | LIAO, G. X., LUAN, C. C., WANG, Z. W., LIU, J. P., YAO, X. H., and FU, J. Z. Acoustic metamaterials: a review of theories, structures, fabrication approaches, and applications. Advanced Materials Technologies, 6 (5), 2000787 (2021) |
28 | KOO, G., and PARK, Y. Vibration reduction by using periodic supports in a piping system. Journal of Sound and Vibration, 1, 53- 68 (1998) |
29 | YU, D. L., DU, C. Y., SHEN, H. J., LIU, J. W., and WEN, J. H. An analysis of structural-acoustic coupling band gaps in a fluid-filled periodic pipe. Chinese Physics Letters, 34 (7), 190- 194 (2017) |
30 | YU, D. L., WEN, J. H., SHEN, H. J., and WEN, X. S. Propagation of steady-state vibration in periodic pipes conveying fluid on elastic foundations with external moving loads. Physics Letters A, 376 (45), 3417- 3422 (2012) |
31 | MOHD, I., and ANIL, K. Lateral flexural vibration reduction in a periodic piping system enhanced with two-degrees-of-freedom resonators. Proceedings of the Institution of Mechanical Engineers, 236 (11), 2297- 2307 (2022) |
32 | LIANG, F., YAO, C., GUAN, D., and LI, J. Low-frequency band gap characteristics of a novel spinning metamaterial pipe with Timoshenko model. Journal of Sound and Vibration, 541, 117316 (2022) |
33 | RUI, S. T., ZHANG, W. Q., YU, R. H., WANG, X. Z., and MA, F. Y. A multi-band elastic metamaterial for low-frequency multi-polarization vibration absorption. Mechanical Systems and Signal Processing, 216, 111464 (2024) |
34 | LI, Y. Q., XIAO, Y., GUO, J. J., ZHU, F. L., and WEN, J. H. Single-phase metabeam for three-directional broadband vibration suppression. International Journal of Mechanical Sciences, 234, 107683 (2022) |
35 | OGASAWARA, A., FUJITA, K., TOMODA, M., and WRIGHT, O. B. Wave-canceling acoustic metarod architected with single material building blocks. Applied Physics Letters, 116 (24), 241904 (2020) |
36 | WANG, K., ZHOU, J. X., CAI, C. Q., XU, D. L., XIA, S. Y., and WEN, G. L. Bidirectional deep-subwavelength band gap induced by negative stiffness. Journal of Sound and Vibration, 515, 116474 (2021) |
37 | FERRAS, D., MANSO, P. A., and SCHLEISS, A. J. Fluid-structure interaction in straight pipelines: friction coupling mechanisms. Computers Structures, 175, 74- 90 (2016) |
38 | LI, Y. F., LI, Y. D., and AKBAR, N. Analysis of vibration of the Euler-Bernoulli pipe conveying fluid by dynamic stiffness method and transfer matrix. Journal of Applied Mathematics and Physics, 8 (1), 172- 183 (2020) |
39 | MOHD, I., ANIL, K., and JAYA, M. M. Vibration control of periodically supported pipes employing optimally designed dampers. International Journal of Mechanical Sciences, 234, 107684 (2022) |
40 | XIAO, L., MOHD, I., and YU, X. Quasi-static band gaps in metamaterial pipes with negative stiffness resonators. International Journal of Mechanical Sciences, 261, 108668 (2024) |
41 | YU, R. H., RUI, S. T., WANG, X. Z., and MA, F. Y. An integrated load-bearing and vibration-isolation supporter with decorated metamaterial absorbers. International Journal of Mechanical Sciences, 253, 108406 (2023) |
[1] | Changqi CAI, Chenjie ZHU, Fengyi ZHANG, Jiaojiao SUN, Kai WANG, Bo YAN, Jiaxi ZHOU. Modeling and analysis of gradient metamaterials for broad fusion bandgaps [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(7): 1155-1170. |
[2] | Jinhui LIU, Yu XUE, Zhihong GAO, A. O. KRUSHYNSKA, Jinqiang LI. Actively tunable sandwich acoustic metamaterials with magnetorheological elastomers [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(11): 1875-1894. |
[3] | Jianing LIU, Jinqiang LI, Ying WU. Bandgap adjustment of a sandwich-like acoustic metamaterial plate with a frequency-displacement feedback control method [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1807-1820. |
[4] | Peng SHENG, Xin FANG, Dianlong YU, Jihong WEN. Nonlinear metamaterial enabled aeroelastic vibration reduction of a supersonic cantilever wing plate [J]. Applied Mathematics and Mechanics (English Edition), 2024, 45(10): 1749-1772. |
[5] | Yang JIN, Tianzhi YANG. Enhanced vibration suppression and energy harvesting in fluid-conveying pipes [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1487-1496. |
[6] | Hu DING, J. C. JI. Vibration control of fluid-conveying pipes: a state-of-the-art review [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(9): 1423-1456. |
[7] | Bo DOU, Hu DING, Xiaoye MAO, Sha WEI, Liqun CHEN. Dynamic modeling of fluid-conveying pipes restrained by a retaining clip [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(8): 1225-1240. |
[8] | Jian ZANG, Ronghuan XIAO, Yewei ZHANG, Liqun CHEN. A novel way for vibration control of FGM fluid-conveying pipes via NiTiNOL-steel wire rope [J]. Applied Mathematics and Mechanics (English Edition), 2023, 44(6): 877-896. |
[9] | Sha WEI, Xiong YAN, Xin FAN, Xiaoye MAO, Hu DING, Liqun CHEN. Vibration of fluid-conveying pipe with nonlinear supports at both ends [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(6): 845-862. |
[10] | Runqing CAO, Zhijian WANG, Jian ZANG, Yewei ZHANG. Resonance response of fluid-conveying pipe with asymmetric elastic supports coupled to lever-type nonlinear energy sink [J]. Applied Mathematics and Mechanics (English Edition), 2022, 43(12): 1873-1886. |
[11] | Chenxu QIANG, Yuxin HAO, Wei ZHANG, Jinqiang LI, Shaowu YANG, Yuteng CAO. Bandgaps and vibration isolation of local resonance sandwich-like plate with simply supported overhanging beam [J]. Applied Mathematics and Mechanics (English Edition), 2021, 42(11): 1555-1570. |
[12] | Tianli JIANG, Huliang DAI, Kun ZHOU, Lin WANG. Nonplanar post-buckling analysis of simply supported pipes conveying fluid with an axially sliding downstream end [J]. Applied Mathematics and Mechanics (English Edition), 2020, 41(1): 15-32. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||